scholarly journals From Prebiotic Chemistry to Supramolecular Biomedical Materials: Exploring the Properties of Self-Assembling Nucleobase-Containing Peptides

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3558
Author(s):  
Pasqualina Liana Scognamiglio ◽  
Chiara Platella ◽  
Ettore Napolitano ◽  
Domenica Musumeci ◽  
Giovanni Nicola Roviello

Peptides and their synthetic analogs are a class of molecules with enormous relevance as therapeutics for their ability to interact with biomacromolecules like nucleic acids and proteins, potentially interfering with biological pathways often involved in the onset and progression of pathologies of high social impact. Nucleobase-bearing peptides (nucleopeptides) and pseudopeptides (PNAs) offer further interesting possibilities related to their nucleobase-decorated nature for diagnostic and therapeutic applications, thanks to their reported ability to target complementary DNA and RNA strands. In addition, these chimeric compounds are endowed with intriguing self-assembling properties, which are at the heart of their investigation as self-replicating materials in prebiotic chemistry, as well as their application as constituents of innovative drug delivery systems and, more generally, as novel nanomaterials to be employed in biomedicine. Herein we describe the properties of nucleopeptides, PNAs and related supramolecular systems, and summarize some of the most relevant applications of these systems.

Author(s):  
Bibhu Prasad Panda ◽  
N.S Dey ◽  
M.E.B. Rao

Over the past few decades, there has been an increased interest for innovative drug delivery systems to improve safety, efficacy and patient compliance, thereby increasing the product patent life cycle. The discovery and development of new chemical entities is not only an expensive but also time consuming affair. Hence the pharmaceutical industries are focusing on the design and development of innovative drug delivery systems for existing drugs. One such delivery system is the fast disintegrating oral film, which has gained popularity among pediatric and geriatric patients. This fast disintegrating film with many potential benefits of a fast disintegrating tablet but devoid of friability and risk of choking is more acceptable to pediatric and geriatric patients. Formulation of fast disintegrating film can be achieved by various techniques, but common methods of preparation include spraying and casting. These film forming techniques use hydrophilic film former in combination with suitable excipients, which allow the film to disintegrate or dissolve quickly in the mouth within a few seconds without the administration of water. In view of the advantages of the fast disintegrating films over the fast disintegrating tablets and other dosage forms, it has the potential for commercial exploitation. The oral film dosage form not only has certain advantages of other fast disintegrating systems but also satisfies the unmet needs of the market. The present review emphasizes on the potential benefits, design and development of robust, stable, and innovative orally fast- disintegrating films and their future scenarios on a global market as a pharmaceutical dosage form.  


2019 ◽  
Vol 26 (14) ◽  
pp. 2502-2513 ◽  
Author(s):  
Md. Iqbal Hassan Khan ◽  
Xingye An ◽  
Lei Dai ◽  
Hailong Li ◽  
Avik Khan ◽  
...  

The development of innovative drug delivery systems, versatile to different drug characteristics with better effectiveness and safety, has always been in high demand. Chitosan, an aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives can be used for direct compression tablets, as disintegrant for controlled release or for improving dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere technology in hydrogel formulation is particularly relevant to pharmaceutical product development. This review highlights the suitability and future of chitosan in drug delivery with special attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation have made this polymer an attractive candidate for developing novel drug delivery systems including various advanced therapeutic applications such as gene delivery, DNA based drugs, organ specific drug carrier, cancer drug carrier, etc.


2020 ◽  
Vol 17 ◽  
Author(s):  
Marina Gallarate ◽  
Daniela Chirio ◽  
Giulia Chindamo ◽  
Elena Peira ◽  
Simona Sapino

: Osteomyelitis is a bone marrow infection which generally involves cortical plates and which may occur after bone trauma, orthopedic/maxillofacial surgery or after vascular insufficiency episodes. It mostly affects people from the Third World Countries, elderly and patients affected by systemic diseases e.g. autoimmune disorders, AIDS, osteoporosis and microvascular disease. The highest percentage of osteomyelitis cases (almost 75%) is caused by Staphylococcus spp., and in particular by Staphylococcus aureus (more than 50%). The ideal classification and the diagnosis of osteomyelitis are two important tools which help the physicians to choose the best therapeutic strategies. Currently, common therapies provide an extensive debridement in association with intravenous administration of antibiotics (penicillin or clindamycin, vancomycin and fluoroquinolones among all for resistant microorganisms), to avoid the formation of sequestra. However, conventional therapeutic approach involves several drawbacks like low concentration of antibiotic in the infected site, which can lead to resistance and adverse effects due to the intravenous administration. For these reasons, in the last years several studies have been focused on the development of drug delivery systems such as cement, beads, scaffold and ceramics made of hydroxyapatite (HA), calcium phosphate (CaP) and β-tricalcium phosphate (β-TCP) which demonstrated to be biocompatible, poorly toxic and capable to allow osteointegration and a prolonged drug release. The aim of this review is to provide a focus on current therapies and latest developed drug delivery systems with particular attention on those based on CaP and its derivatives, hoping that this work could allow further direction in the field of osteomyelitis.


2021 ◽  
Vol 14 (7) ◽  
pp. 671
Author(s):  
Jéssica Lopes-Nunes ◽  
Paula Oliveira ◽  
Carla Cruz

G-quadruplexes (G4s) are a class of nucleic acids (DNA and RNA) with single-stranded G-rich sequences. Owing to the selectivity of some G4s, they are emerging as targeting agents to overtake side effects of several potential anticancer drugs, and delivery systems of small molecules to malignant cells, through their high affinity or complementarity to specific targets. Moreover, different systems are being used to improve their potential, such as gold nano-particles or liposomes. Thus, the present review provides relevant data about the different studies with G4s as drug delivery systems and the challenges that must be overcome in the future research.


2020 ◽  
Vol 21 (18) ◽  
pp. 6617 ◽  
Author(s):  
Angela Fabiano ◽  
Denise Beconcini ◽  
Chiara Migone ◽  
Anna Maria Piras ◽  
Ylenia Zambito

As a natural polysaccharide, chitosan has good biocompatibility, biodegradability and biosecurity. The hydroxyl and amino groups present in its structure make it an extremely versatile and chemically modifiable material. In recent years, various synthetic strategies have been used to modify chitosan, mainly to solve the problem of its insolubility in neutral physiological fluids. Thus, derivatives with negative or positive fixed charge were synthesized and used to prepare innovative drug delivery systems. Positively charged conjugates showed improved properties compared to unmodified chitosan. In this review the main quaternary ammonium derivatives of chitosan will be considered, their preparation and their applications will be described to evaluate the impact of the positive fixed charge on the improvement of the properties of the drug delivery systems based on these polymers. Furthermore, the performances of the proposed systems resulting from in vitro and ex vivo experiments will be taken into consideration, with particular attention to cytotoxicity of systems, and their ability to promote drug absorption.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Alka Lohani ◽  
Garima Singh ◽  
Shiv Sankar Bhattacharya ◽  
Anurag Verma

Polymers have always been valuable excipients in conventional dosage forms, also have shown excellent performance into the parenteral arena, and are now capable of offering advanced and sophisticated functions such as controlled drug release and drug targeting. Advances in polymer science have led to the development of several novel drug delivery systems. Interpenetrating polymer networks (IPNs) have shown superior performances over the conventional individual polymers and, consequently, the ranges of applications have grown rapidly for such class of materials. The advanced properties of IPNs like swelling capacity, stability, biocompatibility, nontoxicity and biodegradability have attracted considerable attention in pharmaceutical field especially in delivering bioactive molecules to the target site. In the past few years various research reports on the IPN based delivery systems showed that these carriers have emerged as a novel carrier in controlled drug delivery. The present review encompasses IPNs, their types, method of synthesis, factors which affects the morphology of IPNs, extensively studied IPN based drug delivery systems, and some natural polymers widely used for IPNs.


Polymers ◽  
2011 ◽  
Vol 3 (2) ◽  
pp. 779-811 ◽  
Author(s):  
Giulia Bonacucina ◽  
Marco Cespi ◽  
Giovanna Mencarelli ◽  
Gianfabio Giorgioni ◽  
Giovanni Filippo Palmieri

2017 ◽  
Vol 18 (5) ◽  
pp. 1532-1543 ◽  
Author(s):  
Hiteshri Makwana ◽  
Francesca Mastrotto ◽  
Johannes P. Magnusson ◽  
Darrell Sleep ◽  
Joanna Hay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document