scholarly journals Antioxidant, Anti-Inflammatory and Antithrombotic Effects of Ginsenoside Compound K Enriched Extract Derived from Ginseng Sprouts

Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4102
Author(s):  
In-Hee Baik ◽  
Kyung-Hee Kim ◽  
Kyung-Ae Lee

Partially purified ginsenoside extract (PGE) and compound K enriched extract (CKE) were prepared from ginseng sprouts, and their antioxidant, anti-inflammatory and antithrombotic effects were investigated. Compared to the 6-year-old ginseng roots, ginseng sprouts were found to have a higher content of phenolic compounds, saponin and protopanaxadiol-type ginsenoside by about 56%, 36% and 43%, respectively. PGE was prepared using a macroporous adsorption resin, and compound K(CK) was converted and enriched from the PGE by enzymatic hydrolysis with a conversion rate of 75%. PGE showed higher effects than CKE on radical scavenging activity in antioxidant assays. On the other hand, CKE reduced nitric oxide levels more effectively than PGE in RAW 264.7 cells. CKE also reduced pro-inflammatory cytokines, such as tumor necrosis factor-α, interleukin (IL)-1β and IL-6 than PGE. Tail bleeding time and volume were investigated after administration of CKE at 70–150 mg/kg/day to mice. CKE administered group showed a significant increase or increased tendency in bleeding time than the control group. Bleeding volume in the CKE group increased than the control group, but not as much as in the aspirin group. In conclusion, ginseng sprouts could be an efficient source of ginsenoside, and CKE converted from the ginsenosides showed antioxidant, anti-inflammatory and antithrombotic effects. However, it was estimated that the CKE might play an essential role in anti-inflammatory effects rather than antioxidant effects.

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 632
Author(s):  
Joana Alves ◽  
Helena Gaspar ◽  
Joana Silva ◽  
Celso Alves ◽  
Alice Martins ◽  
...  

Inflammation is a double-edged sword, as it can have both protective effects and harmful consequences, which, combined with oxidative stress (OS), can lead to the development of deathly chronic inflammatory conditions. Over the years, research has evidenced the potential of marine sponges as a source of effective anti-inflammatory therapeutic agents. Within this framework, the purpose of this study was to evaluate the antioxidant and the anti-inflammatory potential of the marine sponge Cliona celata. For this purpose, their organic extracts (C1–C5) and fractions were evaluated concerning their radical scavenging activity through 2,2-diphenyl-1-picrylhydrazyl radical (DPPH), ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC), and anti-inflammatory activity through a (lipopolysaccharides (LPS)-induced inflammation on RAW 264.7 cells) model. Compounds present in the two most active fractions (F5 and F13) of C4 were tentatively identified by gas chromatography coupled to mass spectrometry (GC-MS). Even though samples displayed low antioxidant activity, they presented a high anti-inflammatory capacity in the studied cellular inflammatory model when compared to the anti-inflammatory standard, dexamethasone. GC-MS analysis led to the identification of n-hexadecanoic acid, cis-9-hexadecenal, and 13-octadecenal in fraction F5, while two major compounds, octadecanoic acid and cholesterol, were identified in fraction F13. The developed studies demonstrated the high anti-inflammatory activity of the marine sponge C. celata extracts and fractions, highlighting its potential for further therapeutic applications.


Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 726 ◽  
Author(s):  
Taekil Eom ◽  
Ekyune Kim ◽  
Ju-Sung Kim

Rumex crispus is a perennial plant that grows in humid environments across Korea. Its roots are used in traditional Korean medicine to treat several diseases, including diseases of the spleen and skin and several inflammatory pathologies. In this study, different solvent fractions (n-hexane, dichloromethane, ethyl acetate, n-butanol, and aqueous fractions) from an ethanol extract of R. crispus roots were evaluated for the presence and composition of anthraquinone compounds and antioxidants by checking for such things as free radical scavenging activity, and electron and proton atom donating ability. In addition, anti-inflammatory activity was measured by NO scavenging activity and inflammatory cytokine production; furthermore, anti-cancer activity was measured by apoptosis-inducing ability. Polyphenolic and flavonoid compounds were shown to be abundant in the dichloromethane and ethyl acetate fractions, which also exhibited strong antioxidant activity, including free radical scavenging and positive results in FRAP, TEAC, and ORAC assays. HPLC analysis revealed that the dichloromethane fractions had higher anthraquinone contents than the other fractions; the major anthraquinone compounds included chrysophanol, emodin, and physcione. In addition, results of the anti-inflammatory assays showed that the ethyl acetate fraction showed appreciable reductions in the levels of nitric oxide and inflammatory cytokines (TNF-α, IL-1β, and IL-6) in Raw 264.7 cells. Furthermore, the anthraquinone-rich dichloromethane fraction displayed the highest anticancer activity when evaluated in a human hepatoma cancer cell line (HepG2), in which it induced increased apoptosis mediated by p53 and caspase activation.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Kwang Jin Lee ◽  
You Chang Oh ◽  
Won Kyung Cho ◽  
Jin Yeul Ma

This study investigated the antioxidant activity of one hundred kinds of pure chemical compounds found within a number of natural substances and oriental medicinal herbs (OMH). Three different methods were used to evaluate the antioxidant activity of DPPH radical-scavenging activity, ABTS radical-scavenging activity, and online screening HPLC-ABTS assays. The results indicated that 17 compounds exhibited better inhibitory activity against ABTS radical than DPPH radical. The IC50rate of a more practical substance is determined, and the ABTS assay IC50values of gallic acid hydrate, (+)-catechin hydrate, caffeic acid, rutin hydrate, hyperoside, quercetin, and kaempferol compounds were 1.03 ± 0.25, 3.12 ± 0.51, 1.59 ± 0.06, 4.68 ± 1.24, 3.54 ± 0.39, 1.89 ± 0.33, and 3.70 ± 0.15 μg/mL, respectively. The ABTS assay is more sensitive to identifying the antioxidant activity since it has faster reaction kinetics and a heightened response to antioxidants. In addition, there was a very small margin of error between the results of the offline-ABTS assay and those of the online screening HPLC-ABTS assay. We also evaluated the effects of 17 compounds on the NO secretion in LPS-stimulated RAW 264.7 cells and also investigated the cytotoxicity of 17 compounds using a cell counting kit (CCK) in order to determine the optimal concentration that would provide an effective anti-inflammatory action with minimum toxicity. These results will be compiled into a database, and this method can be a powerful preselection tool for compounds intended to be studied for their potential bioactivity and antioxidant activity related to their radical-scavenging capacity.


2011 ◽  
Vol 63 (2) ◽  
pp. 413-419 ◽  
Author(s):  
Nikhil Sachan ◽  
Muhammad Arif ◽  
K. Zaman ◽  
Yatindra Kumar

The anti-inflammatory and analgesic activities of the ethyl acetate (EAFSM) and n-butanol (NBFSM) fractions of the alcoholic extract of S. mangifera bark were evaluated using carrageenan-induced rat paw edema and by the tail-flick method in rats. The radical scavenging activity of the ethanolic extract, aqueous extract and fractions was determined with the DPPH radical scavenging capacity assay. Two fractions of the alcoholic extract, EAFSM and NBFSM, at doses of 75, 150, 300 mg/kg b.w. administered orally, showed a significant reduction in paw volume when compared with the respective control group challenged by carrageenan. Different doses of extract fractions also showed a significant prolongation of the tail-flick latency of the rat (P<0.01). Different concentrations of alcoholic, aqueous extracts and fractions of alcoholic extract showed significant free radical scavenging capacity against DPPH generated free radicals.


Fermentation ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 252
Author(s):  
Hye Min Park ◽  
Ji Yeon Lee ◽  
Min Young Kim ◽  
Chang-Ho Kang ◽  
Hyung Seo Hwang

Astragalus membranaceus (AM) has been used for anti-oxidative, anti-inflammatory, anti-cancer, and immunomodulatory activities. In this study, we confirmed that the anti-oxidative and anti-inflammatory effects of AM were enhanced after it was fermented by Lactiplantibacillus plantarum. The anti-oxidative effect was measured by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical levels, total phenolic contents (TPC), reducing power, and H2O2 levels. AM-LP MG5145 and MG5276 showed higher free radical scavenging activity than AM-NF (51.22%). In addition, AM-LP MG5145 and MG5276 showed higher TPC (49.11 mg GAE/mL), reducing power (OD700 = 0.37), and H2O2 (1.71 µM) than AM-NF. The calycosin contents determined to AM-NF (17.24 ng/mL), AM-LP MG5145 (139.94 ng/mL), and MG5276 (351.01 ng/mL) using UPLC-ESI-MS/MS. Anti-inflammatory effects were analyzed by investigating the inhibitory effects of fermented AM on cytotoxicity, NO production, and mRNA expression of COX-2, iNOS, NF-κB, and TNF-α in LPS-induced RAW 264.7 cells. AM-LP MG5145 and MG5276 showed no cytotoxicity. AM-LP MG5145 (50.86%) and MG5276 (51.66%) inhibited NO production in LPS-induced RAW 264.7 cells. Moreover, AM-LP MG5145 and MG5276 downregulated macrophage iNOS, COX2, TNF-ɑ, and NF-κB expression. In conclusion, A. membranaceus fermented by L. plantarum MG5145 and MG5276 can be used in cosmetics and health foods as natural antioxidant compounds.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chul Won Lee ◽  
Yong-Tae Ahn ◽  
Rongjie Zhao ◽  
Youn Sook Kim ◽  
Sang Mi Park ◽  
...  

Porphyra tenera (laver) has long been a popular and traditional seaweed food in Korea, Japan, and China. Historically, it was known as a marine medicinal herb to treat hemorrhoids and cholera morbus in Donguibogam. We investigated the effects of P. tenera extract (PTE) for its antioxidant and anti-inflammatory activities. These activities were measured using assays for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging and its superoxide dismutase- (SOD-) like activity, and through the inhibitory production of inflammatory mediators (prostaglandin E2 (PGE2), NO, tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6)) in lipopolysaccharide- (LPS-) stimulated Raw 264.7 cells. The antioxidant assay results showed that PTE displayed DPPH radical scavenging activity (46.44%), NO radical scavenging activity (67.14%), and SOD-like activity (80.29%) at a concentration of 5 mg/mL. In the anti-inflammatory assays, treatment with PTE (1 mg/mL) significantly inhibited expression levels of LPS-induced COX-2 and iNOS, as well as the production of PGE2, NO, TNF-α, and IL-6. These results show that PTE has antioxidant and anti-inflammatory properties and provide scientific evidence to explain the antioxidative and anti-inflammatory properties of PTE.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2051
Author(s):  
Hyun-Dong Cho ◽  
Cindi Brownmiller ◽  
Harun Sorker ◽  
Shahidul Islam ◽  
Sun-Ok Lee

Limited information is available regarding the health-promoting activities of sweetpotato leaves (SPL). The present study investigated antioxidant and anti-inflammatory effects, and phenolic contents in 29 SPL cultivars harvested in 2018 and 2019. Extracts showed total phenolic contents 9.4–23.1 mg gallic acid equivalent/g, and DPPH radical scavenging activity indicated 36.6–247.3 mM of Trolox equivalent/g. SPL extracts were identified to contain bioactive components such as, chlorogenic acid (11.7–22.1 μg/mg), 3,4-dicaffeoylquinic acid (16.3–59.9 μg/mg), 3,5-dicaffeoylquinic acid (50.9–72.7 μg/mg), chlorophyll B (6.1–12.3 μg/mg), lutein (1.9–4.9 μg/mg), chlorophyll A (2.7–4.3 μg/mg) and β-carotene (0.1 ≤ μg/mg). RAW 264.7 murine macrophage cells were pretreated with 100–200 μg/mL of SPL extracts and 20 μM of dexamethasone, and inflammation was stimulated by lipopolysaccharide (LPS, 100 ng/mL) treatment for 24 h. In LPS-treated cells, prostaglandin E2 production and COX-2 expression were not downregulated by pretreatment of SPL extracts. However, SPL pretreated cells showed significant suppression of nitric oxide (NO), TNF-α, and IL-1β levels under the LPS-induced inflammatory condition. In addition, SPL extracts induced an anti-inflammatory effect in LPS-stimulated RAW 264.7 cells through suppression of NF-κB nuclear translocation, IKK-α and IκB-α phosphorylation, and iNOS expression. These results indicate that SPL extract can be utilized as a functional food ingredient.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Kang Hyun Lee ◽  
Ye Won Jang ◽  
Hansol Kim ◽  
Jang-Seu Ki ◽  
Hah Young Yoo

Microalgae have been attracting attention as feedstock for biorefinery because they have various advantages, such as carbon fixation, high growth rate and high energy yield. The bioactive compounds and lutein contained in microalgae are known to be beneficial for human health, especially eye and brain health. In this study, in order to improve the recovery of bioactive extracts including lutein from Tetraselmis suecica with higher efficiency, an effective solvent was selected, and the extraction parameters such as temperature, time and solid loading were optimized by response surface methodology. The most effective solvent for lutein recovery was identified as 100% methanol, and the optimum condition was determined (42.4 °C, 4.0 h and 125 g/L biomass loading) by calculation of the multiple regression model. The maximum content of recovered lutein was found to be 2.79 mg/mL, and the ABTS radical scavenging activity (IC50) and ferric reducing antioxidant power (FRAP) value were about 3.36 mg/mL and 561.9 μmol/L, respectively. Finally, the maximum lutein recovery from T. suecica through statistical optimization was estimated to be 22.3 mg/g biomass, which was 3.1-fold improved compared to the control group.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1208
Author(s):  
Mina Kim ◽  
Ji Yeong Kim ◽  
Hee Sun Yang ◽  
Jeong-Sook Choe ◽  
In Guk Hwang

Salvia plebeia has been used to treat a variety of inflammatory diseases, as well as colds and bronchitis. Macrophages have antioxidant defense mechanisms to cope with the intracellular reactive oxygen species (ROS) produced as part of the immune response. The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase (HO)-1 pathway in inflamed macrophages is an appealing target due to its protective effect against ROS-induced cell damage. In this study, nepetoidin B (NeB) was first isolated from S. plebeia and identified by nuclear magnetic resonance spectroscopy. NeB reduced pro-inflammatory mediators (nitric oxide and prostaglandin E2) and cytokines (tumor necrosis factor-α, interleukin (IL)-6, and IL-1β) in LPS-activated RAW 264.7 cells by inhibiting the NF-κB signaling pathway. In the NeB-treated group, catalase and superoxide dismutase levels were significantly higher, and ROS expression decreased. By activating Nrf2 signaling, NeB enhanced HO-1 expression. Furthermore, when the cells were pretreated with tin protoporphyrin (an HO-1 inhibitor), the anti-inflammatory effects of NeB were reduced. Therefore, NeB may activate the Nrf2/ HO-1 pathway. These results reveal the NeB isolated from S. plebeia exerts anti-inflammatory effects by modulating NF-κB signaling and activating the Nrf2/HO-1 pathway in LPS-stimulated RAW 264.7 cells.


Sign in / Sign up

Export Citation Format

Share Document