scholarly journals Nanomaterials for Modulating the Aggregation of β-Amyloid Peptides

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4301
Author(s):  
Yaliang Huang ◽  
Yong Chang ◽  
Lin Liu ◽  
Jianxiu Wang

The aberrant aggregation of amyloid-β (Aβ) peptides in the brain has been recognized as the major hallmark of Alzheimer’s disease (AD). Thus, the inhibition and dissociation of Aβ aggregation are believed to be effective therapeutic strategiesforthe prevention and treatment of AD. When integrated with traditional agents and biomolecules, nanomaterials can overcome their intrinsic shortcomings and boost their efficiency via synergistic effects. This article provides an overview of recent efforts to utilize nanomaterials with superior properties to propose effective platforms for AD treatment. The underlying mechanismsthat are involved in modulating Aβ aggregation are discussed. The summary of nanomaterials-based modulation of Aβ aggregation may help researchers to understand the critical roles in therapeutic agents and provide new insight into the exploration of more promising anti-amyloid agents and tactics in AD theranostics.

2002 ◽  
Vol 227 (8) ◽  
pp. 609-615 ◽  
Author(s):  
Weihong Pan ◽  
Beka Solomon ◽  
Lawrence M. Maness ◽  
Abba J. Kastin

Amyloid-β peptides (Aβ) play an important role in the pathophysiology of dementia of the Alzheimer's type and in amyloid angiopathy. Aβ outside the CNS could contribute to plaque formation in the brain where its entry would involve interactions with the blood-brain barrier (BBB). Effective antibodies to Aβ have been developed in an effort to vaccinate against Alzheimer's disease. These antibodies could interact with Aβ in the peripheral blood, block the passage of Aβ across the BBB, or prevent Aβ deposition within the CNS. To determine whether the blocking antibodies act at the BBB level, we examined the influx of radiolabeled Aβ (125I-Aβ1-40) into the brain after ex-vivo incubation with the antibodies. Antibody mAb3D6 (élan Company) reduced the blood-to-brain influx of Aβ after iv bolus injection. It also significantly decreased the accumulation of Aβ in brain parenchyma. To confirm the in-vivo study and examine the specificity of mAb3D6, in-situ brain perfusion in serum-free buffer was performed after incubation of 125I-Aβ1-40 with another antibody mAbmc1 (DAKO Company). The presence of mAbmc1 also caused significant reduction of the influx of Aβ into the brain after perfusion. Therefore, effective antibodies to Aβ can reduce the influx of Aβ1-40 into the brain.


Nanoscale ◽  
2019 ◽  
Vol 11 (13) ◽  
pp. 6297-6306 ◽  
Author(s):  
You Jung Chung ◽  
Byung Il Lee ◽  
Chan Beum Park

Multifunctional carbon dots are synthesized to chelate Cu(ii) ions, suppress Alzheimer's β-amyloid (Aβ) aggregation, and photooxygenate Aβ peptides.


2020 ◽  
Vol 21 (3) ◽  
pp. 1066
Author(s):  
Roberta Corti ◽  
Alysia Cox ◽  
Valeria Cassina ◽  
Luca Nardo ◽  
Domenico Salerno ◽  
...  

The deposition of amyloid-β (Aβ) plaques in the brain is a significant pathological signature of Alzheimer’s disease, correlating with synaptic dysfunction and neurodegeneration. Several compounds, peptides, or drugs have been designed to redirect or stop Aβ aggregation. Among them, the trideca-peptide CWG-LRKLRKRLLR (mApoE), which is derived from the receptor binding sequence of apolipoprotein E, is effectively able to inhibit Aβ aggregation and to promote fibril disaggregation. Taking advantage of Atomic Force Microscopy (AFM) imaging and fluorescence techniques, we investigate if the clustering of mApoE on gold nanoparticles (AuNP) surface may affect its performance in controlling Aβ aggregation/disaggregation processes. The results showed that the ability of free mApoE to destroy preformed Aβ fibrils or to hinder the Aβ aggregation process is preserved after its clustering on AuNP. This allows the possibility to design multifunctional drug delivery systems with clustering of anti-amyloidogenic molecules on any NP surface without affecting their performance in controlling Aβ aggregation processes.


2002 ◽  
Vol 70 (1-2) ◽  
pp. 1-12 ◽  
Author(s):  
Daniel Paris ◽  
Kirk P Townsend ◽  
Demian F Obregon ◽  
James Humphrey ◽  
Michael Mullan

RSC Advances ◽  
2016 ◽  
Vol 6 (102) ◽  
pp. 100072-100078 ◽  
Author(s):  
Lijun Liang ◽  
Li-Wei Wang ◽  
Jia-Wei Shen

Understanding the self-assembly mechanisms of tetra-peptides from Aβ-peptides into different nanostructures.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Yuna Kim ◽  
Ji-Hyun Park ◽  
Hyojin Lee ◽  
Jwa-Min Nam

Abstract Here, we studied the effect of the size, shape and surface charge of Au nanoparticles (AuNPs) on amyloid beta (Aβ) aggregation on a total brain lipid-based supported lipid bilayer (brain SLB), a fluid platform that facilitates Aβ-AuNP aggregation process. We found that larger AuNPs induce large and amorphous aggregates on the brain SLB, whereas smaller AuNPs induce protofibrillar Aβ structures. Positively charged AuNPs were more strongly attracted to Aβ than negatively charged AuNPs and the stronger interactions between AuNPs and Aβ resulted in fewer β-sheets and more random coil structures. We also compared spherical AuNPs, gold nanorods (AuNRs) and gold nanocubes (AuNCs) to study the effect of nanoparticle shape on Aβ aggregation on the brain SLB. Aβ was preferentially bound to the long axis of AuNRs and fewer fibrils were formed whereas all the facets of AuNCs interacted with Aβ to produce the fibril networks. Finally, it was revealed that different nanostructures induce different cytotoxicity on neuroblastoma cells, and, overall, smaller Aβ aggregates induce higher cytotoxicity. The results offer insight into the roles of NPs and brain SLB in Aβ aggregation on the cell membrane and can facilitate the understanding of Aβ-nanostructure co-aggregation mechanism and tuning Aβ aggregate structures.


2001 ◽  
Vol 158 (6) ◽  
pp. 2209-2218 ◽  
Author(s):  
Noriko Oshima ◽  
Maho Morishima-Kawashima ◽  
Haruyasu Yamaguchi ◽  
Masahiro Yoshimura ◽  
Shiro Sugihara ◽  
...  

Author(s):  
Elina Berntsson ◽  
Suman Paul ◽  
Faraz Vosough ◽  
Sabrina B. Sholts ◽  
Jüri Jarvet ◽  
...  

Alzheimer’s disease (AD) is an incurable disease and the main cause of age-related dementia worldwide, despite decades of research. Treatment of AD with lithium (Li) has showed promising results, but the underlying mechanism is unclear. The pathological hallmark of AD brains is deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils. The plaques contain also metal ions of e.g. Cu, Fe, and Zn, and such ions are known to interact with Aβ peptides and modulate their aggregation and toxicity. The interactions between Aβ peptides and Li+ ions have however not been well investigated. Here, we use a range of biophysical techniques to characterize in vitro interactions between Aβ peptides and Li+ ions. We show that Li+ ions display weak and non-specific interactions with Aβ peptides, and have minor effects on Aβ aggregation. These results indicate that possible beneficial effects of Li on AD pathology are not likely caused by direct interactions between Aβ peptides and Li+ ions.


Biomedicines ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 272
Author(s):  
Anaïs Bécot ◽  
Charlotte Volgers ◽  
Guillaume van Niel

In Alzheimer′s disease (AD), endolysosomal dysfunctions are amongst the earliest cellular features to appear. Each organelle of the endolysosomal system, from the multivesicular body (MVB) to the lysosome, contributes to the homeostasis of amyloid precursor protein (APP) cleavage products including β-amyloid (Aβ) peptides. Hence, this review will attempt to disentangle how changes in the endolysosomal system cumulate to the generation of toxic amyloid species and hamper their degradation. We highlight that the formation of MVBs and the generation of amyloid species are closely linked and describe how the molecular machineries acting at MVBs determine the generation and sorting of APP cleavage products towards their degradation or release in association with exosomes. In particular, we will focus on AD-related distortions of the endolysomal system that divert it from its degradative function to favour the release of exosomes and associated amyloid species. We propose here that such an imbalance transposed at the brain scale poses a novel concept of transmissible endosomal intoxication (TEI). This TEI would initiate a self-perpetuating transmission of endosomal dysfunction between cells that would support the propagation of amyloid species in neurodegenerative diseases.


2004 ◽  
Vol 279 (50) ◽  
pp. 52781-52788 ◽  
Author(s):  
Akira Morimoto ◽  
Kazuhiro Irie ◽  
Kazuma Murakami ◽  
Yuichi Masuda ◽  
Hajime Ohigashi ◽  
...  

Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer β-amyloid peptides (Aβ40 and Aβ42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Aβ peptides are rich in intermolecular β-sheet, the precise secondary structure of Aβ in the aggregates remains unclear. To identify the amino acid residues involved in the β-sheet formation, 34 proline-substituted mutants of Aβ42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in β-sheet, whereas they are easily accommodated in β-turn as a Pro-Xcorner. Among the mutants at positions 15-32, only E22P-Aβ42 extensively aggregated with stronger neurotoxicity than wild-type Aβ42, suggesting that the residues at positions 15-21 and 24-32 are involved in the β-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Aβ42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Aβ42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Aβ42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Aβ42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the β-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Aβ42 and Aβ40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Aβ42. The identification of the β-sheet region of Aβ42 is a basis for designing new aggregation inhibitors of Aβ peptides.


Sign in / Sign up

Export Citation Format

Share Document