scholarly journals Silver Nanoparticles Using Eucalyptus or Willow Extracts (AgNPs) as Contact Lens Hydrogel Components to Reduce the Risk of Microbial Infection

Molecules ◽  
2021 ◽  
Vol 26 (16) ◽  
pp. 5022
Author(s):  
Andreas K. Rossos ◽  
Christina N. Banti ◽  
Panagiotis K. Raptis ◽  
Christina Papachristodoulou ◽  
Ioannis Sainis ◽  
...  

Eucalyptus leaves (ELE) and willow bark (WBE) extracts were utilized towards the formation of silver nanoparticles (AgNPs(ELE), AgNPs(WBE)). AgNPs(ELE) and AgNPs(WBE) were dispersed in polymer hydrogels to create pHEMA@AgNPs(ELE)_2 and pHEMA@AgNPs(WBE)_2 using hydroxyethyl-methacrylate (HEMA). The materials were characterized in a solid state by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), differential scanning calorimetry (DTG/DSC) and attenuated total reflection spectroscopy (ATR-FTIR) and ultraviolet visible (UV-vis) spectroscopy in solution. The antimicrobial potential of the materials was investigated against the Gram-negative bacterial strain Pseudomonas aeruginosa (P. aeruginosa) and the Gram-positive bacterial strain of the genus Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus), which are involved in microbial keratitis. The percentage of bacterial viability of P. aeruginosa and S. epidermidis upon their incubation over the pHEMA@AgNPs(ELE)_2 discs is interestingly low (28.3 and 6.8% respectively), while the inhibition zones (IZ) formed are 12.3 ± 1.7 and 13.2 ± 1.2 mm, respectively. No in vitro toxicity of this material towards human corneal epithelial cells (HCEC) was detected. Despite its low performance against S. aureus, pHEMA@AgNPs(ELE)_2 could be an efficient candidate towards the development of contact lenses that reduces microbial infection risk.

2021 ◽  
Vol 22 (7) ◽  
pp. 3539
Author(s):  
Anastasia Meretoudi ◽  
Christina N. Banti ◽  
Panagiotis K. Raptis ◽  
Christina Papachristodoulou ◽  
Nikolaos Kourkoumelis ◽  
...  

The oregano leaves’ extract (ORLE) was used for the formation of silver nanoparticles (AgNPs(ORLE)). ORLE and AgNPs(ORLE) (2 mg/mL) were dispersed in polymer hydrogels to give the pHEMA@ORLE_2 and pHEMA@AgNPs(ORLE)_2 using hydroxyethyl–methacrylate (HEMA). The materials were characterized by X-ray fluorescence (XRF) spectroscopy, X-ray powder diffraction analysis (XRPD), thermogravimetric differential thermal analysis (TG-DTA), derivative thermogravimetry/differential scanning calorimetry (DTG/DSC), ultraviolet (UV-Vis), and attenuated total reflection mode (ATR-FTIR) spectroscopies in solid state and UV–Vis in solution. The crystallite size value, analyzed with XRPD, was determined at 20 nm. The antimicrobial activity of the materials was investigated against Gram-negative bacterial strains Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli). The Gram-positive ones of the genus of Staphylococcus epidermidis (S. epidermidis) and Staphylococcus aureus (S. aureus) are known to be involved in microbial keratitis by the means of inhibitory zone (IZ), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC). The IZs, which developed upon incubation of P. aeruginosa, E. coli, S. epidermidis, and S. aureus with paper discs soaked in 2 mg/mL of AgNPs(ORLE), were 11.7 ± 0.7, 13.5 ± 1.9, 12.7 ± 1.7, and 14.3 ± 1.7 mm. When the same dose of ORLE was administrated, the IZs were 10.2 ± 0.7, 9.2 ± 0.5, 9.0 ± 0.0, and 9.0 ± 0.0 mm. The percent of bacterial viability when they were incubated over the polymeric hydrogel discs of pHEMA@AgNPs(ORLE)_2 was interestingly low (66.5, 88.3, 77.7, and 59.6%, respectively, against of P. aeruginosa, E. coli, S. epidermidis, and S. aureus) and those of pHEMA@ORLE_2 were 89.3, 88.1, 92.8, and 84.6%, respectively. Consequently, pHEMA@AgNPs(ORLE)_2 could be an efficient candidate toward the development of non-infectious contact lenses.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2082 ◽  
Author(s):  
Salem S. Salem ◽  
Ehab F. EL-Belely ◽  
Gniewko Niedbała ◽  
Maryam M. Alnoman ◽  
Saad El-Din Hassan ◽  
...  

An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV–vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13–40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (−19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25–100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.


Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1377
Author(s):  
Chandra Kishore Somasundaram ◽  
Raji Atchudan ◽  
Thomas Nesakumar Jebakumar Immanuel Edison ◽  
Suguna Perumal ◽  
Rajangam Vinodh ◽  
...  

Herein, Sargassum coreanum (marine algae)-mediated silver nanoparticles (AgNPs) were successfully synthesized by a simple reduction method. The synthesized AgNPs were characterized using ultraviolet-visible spectroscopy, attenuated total reflection Fourier transformed infrared spectroscopy, X-ray diffractometry, field emission scanning electron microscopy (FESEM) with energy-dispersive X-ray (EDX) spectroscopy, and high-resolution transmission electron microscopy (HR-TEM) analysis. The acquired colloidal AgNPs were strongly absorbed around 420 nm and displayed brown color under visible light. The XRD pattern of AgNPs exposed their face-centered cubic geometry along with crystalline nature. The HRTEM images of synthesized AgNPs confirmed the mean particle size of 19 nm with a distorted spherical shape, and the calculated interlayer distance (d-spacing value) was about 0.24 nm. Further, the catalytic degradation of methylene blue using sodium borohydride and AgNPs was monitored using UV–vis spectroscopy. The result revealed that AgNPs performed as a superior catalyst, which completely degraded MB in 20 min. The rate constant for MB degradation was calculated to be 0.106 min−1, demonstrating that the marine algae-mediated AgNPs had outstanding catalytic activity. This approach is easy and environmentally benign, which can be applied for environmental-based applications such as dye degradation and pollutant detoxification.


2021 ◽  
Vol 17 (8) ◽  
pp. 1612-1626
Author(s):  
Syed Mahmood ◽  
Tan Siew Mei ◽  
Wong Xi Yee ◽  
Ayah Rebhi Hilles ◽  
Walla Alelwani ◽  
...  

Nanotechnology is drawing attention nowadays due to its ability to regulate metals into nanosize, ultimately changing metal’s physical, chemical, and optical properties. Silver nanoparticles are known for their potential impact as antimicrobial agents due to their inherent property penetrating the cell wall. The present study aimed to develop and statistically optimise using a novel combination of capsaicin loaded silver nanoparticles (AgCNPs) as an effective anti-bacterial agent to treat psoriasis using a green approach. Ascorbic acid was used as a reducing agent to fabricate silver nanoparticles. The formulation parameters optimisation was conducted using Box-Behnken Design (3×3 factorial design). The loading of capsaicin was confirmed by attenuated total reflectance-fourier transform infrared spectroscopy. Energy-dispersive X-ray spectroscopy-scanning electron microscopy (EDX-SEM) confirmed the existence of silver; net-like structure revealed in SEM and high-resolution transmission electron microscopy further confirmed the nano size of the formulation. Differential scanning calorimetry and X-ray diffraction demonstrated the capsaicin transformed into amorphous after encapsulated. An in-vitro microbial study showed that the 0.10 M formulation of AgCNPs exerted potent anti-bacterial activity, which can be considered an alternative anti-bacterial agent. It also displayed that the zone of inhibition was significantly high in gram-negative bacteria (E. coli) than gram-positive bacteria (S. aureus). Green synthesised AgCNPs showed highly significant anti-bacterial activity, which indicates that this formulation can be very promising for treating psoriasis.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hend M. Tag ◽  
Amna A. Saddiq ◽  
Monagi Alkinani ◽  
Nashwa Hagagy

AbstractHaloferax sp strain NRS1 (MT967913) was isolated from a solar saltern on the southern coast of the Red Sea, Jeddah, Saudi Arabia. The present study was designed for estimate the potential capacity of the Haloferax sp strain NRS1 to synthesize (silver nanoparticles) AgNPs. Biological activities such as thrombolysis and cytotoxicity of biosynthesized AgNPs were evaluated. The characterization of silver nanoparticles biosynthesized by Haloferax sp (Hfx-AgNPs) was analyzed using UV–vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The dark brown color of the Hfx-AgNPs colloidal showed maximum absorbance at 458 nm. TEM image analysis revealed that the shape of the Hfx-AgNPs was spherical and a size range was 5.77- 73.14 nm. The XRD spectra showed a crystallographic plane of silver nanoparticles, with a crystalline size of 29.28 nm. The prominent FTIR peaks obtained at 3281, 1644 and 1250 cm− 1 identified the Functional groups involved in the reduction of silver ion reduction to AgNPs. Zeta potential results revealed a negative surface charge and stability of Hfx-AgNPs. Colloidal solution of Hfx-AgNPs with concentrations ranging from 3.125 to 100 μg/mL was used to determine its hemolytic activity. Less than 12.5 μg/mL of tested agent showed no hemolysis with high significant decrease compared with positive control, which confirms that Hfx-AgNPs are considered non-hemolytic (non-toxic) agents according to the ISO/TR 7405-1984(f) protocol. Thrombolysis activity of Hfx-AgNPs was observed in a concentration-dependent manner. Further, Hfx-AgNPs may be considered a promising lead compound for the pharmacological industry.


Author(s):  
Mateusz Gołdyn ◽  
Anna Komasa ◽  
Mateusz Pawlaczyk ◽  
Aneta Lewandowska ◽  
Elżbieta Bartoszak-Adamska

The study of various forms of pharmaceutical substances with specific physicochemical properties suitable for putting them on the market is one of the elements of research in the pharmaceutical industry. A large proportion of active pharmaceutical ingredients (APIs) occur in the salt form. The use of an acidic coformer with a given structure and a suitable pK a value towards purine alkaloids containing a basic imidazole N atom can lead to salt formation. In this work, 2,6-dihydroxybenzoic acid (26DHBA) was used for cocrystallization of theobromine (TBR) and caffeine (CAF). Two novel salts, namely, theobrominium 2,6-dihydroxybenzoate, C7H9N4O2 +·C7H5O4 − (I), and caffeinium 2,6-dihydroxybenzoate, C8H11N4O2 +·C7H5O4 − (II), were synthesized. Both salts were obtained independently by slow evaporation from solution, by neat grinding and also by microwave-assisted slurry cocrystallization. Powder X-ray diffraction measurements proved the formation of the new substances. Single-crystal X-ray diffraction studies confirmed proton transfer between the given alkaloid and 26DHBA, and the formation of N—H...O hydrogen bonds in both I and II. Unlike the caffeine cations in II, the theobromine cations in I are paired by noncovalent N—H...O=C interactions and a cyclic array is observed. As expected, the two hydroxy groups in the 26DHBA anion in both salts are involved in two intramolecular O—H...O hydrogen bonds. C—H...O and π–π interactions further stabilize the crystal structures of both compounds. Steady-state UV–Vis spectroscopy showed changes in the water solubility of xanthines after ionizable complex formation. The obtained salts I and II were also characterized by theoretical calculations, Fourier-transform IR spectroscopy (FT–IR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and elemental analysis.


2021 ◽  
Author(s):  
Jelena S. Katanić Stanković ◽  
◽  
Nikola Srećković ◽  
Vladimir Mihailović

In this study, silver nanoparticles (AgNPs) have been synthesized using the aqueous extract of the aerial parts of B. purpurocaerulea, collected in Serbia. B. purpurocaerulea silver nanoparticles (Bp– AgNPs) synthesis was confirmed using UV-Vis spectroscopy and Fourier Transform Infrared Spectroscopy (FTIR). The biological potential of synthesized Bp-AgNPs was evaluated in vitro using ABTS assay for determining free radical scavenging potential and microdilution method for analysis of antimicrobial properties. Bp-AgNPs showed high antioxidant activity similar to Bp-extract, comparable to BHT. The synthesized nanoparticles exerted remarkable antibacterial effects, with minimal inhibitory concentration (MIC) values below 20 µg/mL. In the case of some bacterial strains, the results of Bp– AgNPs were comparable or similar to standard antibiotic erythromycin. The antifungal activity of Bp– AgNPs was moderate for most of the used strains. Nevertheless, several fungi were resistant to the NPs action, while two tested Penicillium species were extremely sensitive on Bp-AgNPs with MIC lower than 40 µg/mL. The antimicrobial properties of Bp-AgNPs can be useful for the development of new NPs-containing products.


2018 ◽  
Vol 10 (1) ◽  
pp. 115 ◽  
Author(s):  
Napaphak Jaipakdee ◽  
Thaned Pongjanyakul ◽  
Ekapol Limpongsa

Objective: The objectives of this study were to prepare and characterize a buccal mucoadhesive patch using poly (vinyl alcohol) (PVA), poly (vinyl pyrrolidone) (PVP) as a mucoadhesive matrix, Eudragit S100 as a backing layer, and lidocaine HCl as a model drug.Methods: Lidocaine HCl buccal patches were prepared using double casting technique. Molecular interactions in the polymer matrices were studied using attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), differential scanning calorimetry (DSC) and X-ray diffractometry. Mechanical and mucoadhesive properties were measured using texture analyzer. In vitro permeation of lidocaine HCl from the patch was conducted using Franz diffusion cell.Results: Both of the free and lidocaine HCl patches were smooth and transparent, with good flexibility and strength. ATR-FTIR, DSC and X-ray diffractometry studies confirmed the interaction of PVA and PVP. Mechanical properties of matrices containing 60% PVP were significantly lower than those containing 20% PVP (*P<0.05). Mucoadhesive properties had a tendency to decrease with the concentration of PVP in the patch. The patch containing 60% PVP had significantly lower muco-adhesiveness than those containing 20% PVP (*P<0.05). In vitro permeation revealed that the pattern of lidocaine HCl permeation started with an initial fast permeation, followed by a slower permeation rate. The initial permeation fluxes follow the zero-order model of which rate was not affected by the PVP concentrations in the PVA/PVP matrix.Conclusion: Mucoadhesive buccal patches fabricated with PVA/PVP were successfully prepared. Incorporation of PVP in PVA/PVP matrix affected the strength of polymeric matrix and mucoadhesive property of patches.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1777 ◽  
Author(s):  
Md. Mahiuddin ◽  
Prianka Saha ◽  
Bungo Ochiai

A green synthesis of silver nanoparticles (AgNPs) was conducted using the stem extract of Piper chaba, which is a plant abundantly growing in South and Southeast Asia. The synthesis was carried out at different reaction conditions, i.e., reaction temperature, concentrations of the extract and silver nitrate, reaction time, and pH. The synthesized AgNPs were characterized by visual observation, ultraviolet–visible (UV-vis) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), energy dispersive x-ray (EDX), and Fourier transform infrared (FTIR) spectroscopy. The characterization results revealed that AgNPs were uniformly dispersed and exhibited a moderate size distribution. They were mostly spherical crystals with face-centered cubic structures and an average size of 19 nm. The FTIR spectroscopy and DLS analysis indicated that the phytochemicals capping the surface of AgNPs stabilize the dispersion through anionic repulsion. The synthesized AgNPs effectively catalyzed the reduction of 4-nitrophenol (4-NP) and degradation of methylene blue (MB) in the presence of sodium borohydride.


2019 ◽  
Vol 8 (3) ◽  
pp. 576-585

In the present study silver nanoparticles (AgNPs) have been synthesized through the cell-free extracts of the rooftop dwelling cyanobacterium Scytonema geitleri HKAR-12. UV-VIS spectroscopy, FTIR, X-ray diffraction, SEM and TEM were used for the determination of morphological, structural and optical properties of synthesized AgNPs. Extracts of Scytonema geitleri HKAR-12 have the ability to reduce AgNO3 to Ag0. Sharp peak at 422 nm indicated the rapid synthesis of AgNPs. FTIR results showed the presence of different groups responsible for the reduction of AgNO3 to AgNPs. XRD pattern confirmed the crystalline nature of AgNPs. SEM showed the bead shape structure of AgNPs. TEM confirmed the actual size of AgNPs to be ranging between 9-17 nm. AgNPs showed antibacterial activity against Pseudomonas aeruginosa, Escherichia coli strain1 and E. coli strain 2 and 11 μg/mL of AgNPs effectively inhibited the growth of MCF-7 cells. Hence, Scytonema geitleri HKAR-12, isolated from the rooftop could serve as a desirable biological candidate for convenient and cheap production of AgNPs having antimicrobial and anti-cancerous properties.


Sign in / Sign up

Export Citation Format

Share Document