scholarly journals Effectiveness of Quaternary Ammonium in Reducing Microbial Load on Eggs

Molecules ◽  
2021 ◽  
Vol 26 (17) ◽  
pp. 5259
Author(s):  
Hao Yuan Chan ◽  
Anis Shobirin Meor Hussin ◽  
Nurul Hawa Ahmad ◽  
Yaya Rukayadi ◽  
Abd-ElAziem Farouk

Table eggs are an affordable yet nutritious protein source for humans. Unfortunately, eggs are a vector for bacteria that could cause foodborne illness. This study aimed to investigate the effectiveness of a quaternary ammonium compound (quat) sanitizer against aerobic mesophilic bacteria, yeast, and mold load on the eggshell surface of free-range and commercial farms and the post-treatment effect on microbial load during storage. Total aerobic mesophilic bacteria, yeast, and molds were enumerated using plate count techniques. The efficacy of the quaternary ammonium sanitizer (quat) was tested using two levels: full factorial with two replicates for corner points, factor A (maximum: 200 ppm, minimum: 100 ppm) and factor B (maximum: 15 min, minimum: 5 min). Quat sanitizer significantly (p < 0.05) reduced approximately 4 log10 CFU/cm2 of the aerobic mesophilic bacteria, 1.5 to 2.5 log10 CFU/cm2 of the mold population, and 1.5 to 2 log10 CFU/cm2 of the yeast population. However, there was no significant (p ≥ 0.05) response observed between individual factor levels (maximum and minimum), and two-way interaction terms were also not statistically significant (p ≥ 0.05). A low (<1 log10 CFU/cm2) aerobic mesophilic bacteria trend was observed when shell eggs were stored in a cold environment up to the production expiry date. No internal microbial load was observed; thus, it was postulated that washing with quat sanitizer discreetly (without physically damaging the eggshell) does not facilitate microbial penetration during storage at either room temperature or cold storage. Current study findings demonstrated that the quat sanitizer effectively reduced the microbial population on eggshells without promoting internal microbial growth.

Author(s):  
Solange Gahongayire ◽  
Adamu Almustapha Aliero ◽  
Charles Drago Kato ◽  
Alice Namatovu

Bacterial infections are on a rise with causal-resistant strains increasing the economic burden to both patients and healthcare providers. Salons are recently reported as one of the sources for transmission of such resistant bacterial strains. The current study aimed at the identification of the prevalent bacteria and characterization of quaternary ammonium compound (qac) genes from disinfectant-resistant S. aureus isolated from salon tools in Ishaka town, Bushenyi District of Uganda. A total of 125 swabs were collected from different salon tools (combs, brushes, scissors, clippers, and shaving machines), and prevalent bacteria were isolated using standard microbiological methods. Identification of isolated bacteria was done using standard phenotypic methods including analytical profile index (API). Susceptibility patterns of the isolated bacteria to disinfectant were determined using the agar well diffusion method. Quaternary ammonium compound (qac) genes (qacA/B and qacC) associated with disinfectant resistances were detected from disinfectant-resistant S. aureus using multiplex polymerase chain reaction (PCR) and Sanger sequencing methods. Of the 125 swab samples collected from salons, 78 (62.4%) were contaminated with different bacteria species. Among the salon tools, clippers had the highest contamination of 20 (80.0%), while shaving machines had the lowest contamination of 11 (44.0%). The most prevalent bacteria identified were Staphylococcus epidermidis (28.1%) followed by S. aureus (26.5%). Of all the disinfectants tested, the highest resistance was shown with sodium hypochlorite 1%. Out of the eight (8) disinfectant-resistant S. aureus analysed for qac genes, 2 (25%) isolates (STP6 and STP9) were found to be qacA/B positive, while 2 (25%) isolates (STP8 and STP9) were found to be qacC gene positive. This study has shown that bacterial contamination of salon tools is common, coupled with resistance to disinfectants with sodium hypochlorite resistance being more common. Furthermore, observed resistance was attributed to the presence of qac genes among S. aureus isolates. A search for qac genes for disinfectant resistance from other bacteria species is recommended.


ChemMedChem ◽  
2016 ◽  
Vol 11 (13) ◽  
pp. 1401-1405 ◽  
Author(s):  
Megan E. Forman ◽  
Megan C. Jennings ◽  
William M. Wuest ◽  
Kevin P. C. Minbiole

1984 ◽  
Vol 47 (11) ◽  
pp. 841-847 ◽  
Author(s):  
P. GÉLINAS ◽  
J. GOULET ◽  
G. M. TASTAYRE ◽  
G. A. PICARD

The combined influence of temperature (4, 20, 37 and 50°C) and contact time (10, 20 and 30 min) on the efficacy of eight commercial disinfectants was evaluated by the Association of Official Analytical Chemists use-dilution method. An increase of temperature greatly enhanced the activity of all tested solutions, particularly glutaraldehyde, chlorhexidine acetate and the amphoteric surfactant, whereas contact time mainly enhanced the efficacy of sodium hypochlorite, the quaternary ammonium compound and the amphoteric surfactant. Temperature and contact time influenced the activity profile of the disinfectants tested, with a maximum efficacy near the optimum growth temperature (37°C) of the test organism (Pseudomonas aeruginosa ATCC 15442). This organism was highly resistant to the amphoteric surfactant as well as to the two quaternary ammonium compounds. Classification of disinfectants is proposed on the basis of their mode of action, temperature dependence and activation energies, heat and light stability, and tolerance to organic matter.


2018 ◽  
Vol 79 (1) ◽  
pp. 41-50 ◽  
Author(s):  
Daniela Conidi ◽  
Mehran Andalib ◽  
Christopher Andres ◽  
Christopher Bye ◽  
Art Umble ◽  
...  

Abstract Quaternary ammonium compounds (QACs) are surface-active organic compounds common in industrial cleaner formulations widely used in various sanitation applications. While acting as effective pathogenic biocides, QACs lack selective toxicity and often have poor target specificity. As a result, adverse effects on biological processes and thus the performance of biological nutrient removal (BNR) systems may be encountered when QACs enter wastewater treatment plants (WWTPs). Because of these impacts, there is motivation to screen wastewater influents for QACs and for process engineers to consider the inhibition effects of QACs on process evaluation and design of BNR plants. This paper introduces a mathematical model to describe the fate of QACs in a WWTP via biodegradation and bio-adsorption, and the inhibitory effect of QACs on nitrifiers and ordinary heterotrophic organisms. The model was incorporated as an add-on model in BioWin 5.3 and simulations of experimental systems were used for comparison of model results to measured data reported in the literature. The model was found to accurately predict the bulk phase concentration of QAC and the inhibition of nitrification with QAC concentrations ≥2 mg/L. This work provides a preliminary framework for simulation of BNR plants receiving inhibitory substances in the influent.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Aemiro Tadesse Zula ◽  
Dagem Alemayehu Ayele ◽  
Woinshet Abera Egigayhu

Background. Noodle products are popular throughout the world, and they can be prepared from cereal like wheat, maize, and rice. Nowadays, healthy and nutritious product requirement has been increasing. Thus, research on the nutrition-rich but neglected crop is becoming visible nowadays to ensure global food security and to satisfy the nutritional need. Research indicated that moringa tree leaf powder has good nutritional value, but it is not yet customized and properly consumed. Method. The study is aimed at developing noodles from wheat flour and moringa leaf powder and evaluating proximate composition, antinutritional content (phytate and tannin), microbial load (total plate count and yeast and mold count), and sensory acceptability. The experiment contains four treatments and one control. The data from proximate composition, antinutritional content, microbial load, and sensory acceptability were subjected to SAS version 9 software. A complete randomized design was used to analyze the proximate composition, antinutritional content, and microbial load data, and a randomized complete block design was used to analyze the acceptability test. Result. The study revealed that in the noodles formulated from 80% durum wheat flour and 20% of moringa leaf powder, the ash, protein, fat, fiber, gross energy, phytate, and tannin content were increased by 39.39%, 10.86%, 153%, 42.2%, 3.43%, 39.83%, and 329.78%, respectively, as compared with noodles made from 100% durum wheat flour. However, moisture, total bacteria count, and yeast and mold count were decreased by 28.71%, 45.52%, and 55.93%, respectively. Similarly, the study also revealed that the acceptability test of noodles was decreased as moringa leaf powder concentration is increased. Conclusion. In conclusion, besides the good nutritional profile and antimicrobial capacity, moringa has antinutritional content and influences the sensory acceptability of products. Therefore, limiting the moringa leaf powder concentration is needed during the development of products using moringa leaf powder.


2020 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
J. Ndiritu ◽  
I W. Mwangi ◽  
J. I. Murungi ◽  
R. N. Wanjau

 Anthropogenic activities contribute large amounts of pollutants to the environment which threaten animal and human health. There is increased realization of the effect of these toxins on surface and ground water, consequently, their elimination is vital in rendering secure water for drinking as well as culpable release of effluents to our habitats. Phenolic compounds cause serious health effects to both humans and animals; a p-Nitrophenol concentration of 1 ppb changes the taste and odour of water as well as meat and fish quality. In humans, exposure to PNP causes eye and skin burns while its interaction with blood leads to confusion, cyanosis and unconsciousness. It is imperative therefore to find ways for removing PNP from water. Among the available techniques for removing PNP from water, adsorption is more convenient and offers more advantages because of its design, simplicity, and operating flexibility. The present study involved application of peels of raw Afromomum melegueta (RAM) and quaternised Afromomum melegueta (QAM) to remove PNP from water through adsorption. The raw adsorbents were modified with a quaternary ammonium salt to improve their uptake efficiency. The impact of experimental parameters; contact time, pH, sorbent dose, temperature and concentration were investigated. Attenuated FTIR technique was employed to characterize the adsorbent materials. It was established that the quaternary ammonium compound was anchored chemically within the cellulose structure of Afromomum melegueta peels. The behavior of adsorption of PNP was investigated using Langmuir and Freundlich isotherm models. The physical sorption load was 8.70 and 106.38 mg/g for RAM and QAM peels respectively from Langmuir adsorption equation. Uptake of PNP is high at the first 30 mins of contact and at sorbent dosage of 0.01 g and 0.03 g for RAM and QAM respectively. Quantity of PNP removed increases as the initial concentration rises however, adsorption decreases after a concentration exceeding 30 mg/L. The ideal pH and temperature for PNP removal is at pH 3 and 25 ˚C respectively. In conclusion, the findings suggest that Afromomum melegueta peels can be friendly to the environment, cheap biosorbents and efficient which can be applied for the uptake of PNP from drinking water


Sign in / Sign up

Export Citation Format

Share Document