scholarly journals Uptake of p-Nitrophenol (PNP) from model aqueous solutions using raw and quaternised Afromomum melegueta peels

2020 ◽  
Vol 1 (1) ◽  
pp. 1-8
Author(s):  
J. Ndiritu ◽  
I W. Mwangi ◽  
J. I. Murungi ◽  
R. N. Wanjau

 Anthropogenic activities contribute large amounts of pollutants to the environment which threaten animal and human health. There is increased realization of the effect of these toxins on surface and ground water, consequently, their elimination is vital in rendering secure water for drinking as well as culpable release of effluents to our habitats. Phenolic compounds cause serious health effects to both humans and animals; a p-Nitrophenol concentration of 1 ppb changes the taste and odour of water as well as meat and fish quality. In humans, exposure to PNP causes eye and skin burns while its interaction with blood leads to confusion, cyanosis and unconsciousness. It is imperative therefore to find ways for removing PNP from water. Among the available techniques for removing PNP from water, adsorption is more convenient and offers more advantages because of its design, simplicity, and operating flexibility. The present study involved application of peels of raw Afromomum melegueta (RAM) and quaternised Afromomum melegueta (QAM) to remove PNP from water through adsorption. The raw adsorbents were modified with a quaternary ammonium salt to improve their uptake efficiency. The impact of experimental parameters; contact time, pH, sorbent dose, temperature and concentration were investigated. Attenuated FTIR technique was employed to characterize the adsorbent materials. It was established that the quaternary ammonium compound was anchored chemically within the cellulose structure of Afromomum melegueta peels. The behavior of adsorption of PNP was investigated using Langmuir and Freundlich isotherm models. The physical sorption load was 8.70 and 106.38 mg/g for RAM and QAM peels respectively from Langmuir adsorption equation. Uptake of PNP is high at the first 30 mins of contact and at sorbent dosage of 0.01 g and 0.03 g for RAM and QAM respectively. Quantity of PNP removed increases as the initial concentration rises however, adsorption decreases after a concentration exceeding 30 mg/L. The ideal pH and temperature for PNP removal is at pH 3 and 25 ˚C respectively. In conclusion, the findings suggest that Afromomum melegueta peels can be friendly to the environment, cheap biosorbents and efficient which can be applied for the uptake of PNP from drinking water

2018 ◽  
Vol 7 (3) ◽  
pp. 966
Author(s):  
Kartik Kulkarni ◽  
Varsha Sudheer ◽  
C R Girish

The potential of agricultural waste cashew nut shells as an adsorbent for removing phenol from wastewater is presented in this paper. The adsorbent was treated with 3M sulphuric acid in order to improve the properties. The experimental parameters such as adsorbent dosage, concentration and temperature were optimized with response surface methodology (RSM). The isotherm data were tested with different isotherm models and it obeyed Freundlich Isotherm showing the multilayer adsorption. The kinetic data satisfied pseudo-first order kinetic model. The maximum adsorption capacity was calculated to be 35.08 mg/g proving the capability of cashew nut shells for removing phenol from wastewater.  


2021 ◽  
Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Elmira Kashi ◽  
Zaher Mundher Yaseen ◽  
Zeid A. ALOthman ◽  
...  

Abstract Kaolin clay (KN) was employed as an inorganic filler to modify a cross-linked chitosan-glyoxal as Schiff’s-based chitosan composite derivative (CTS-GLY). The resulting (CTS-GLY/KN) was found to be a promising composite synthetic biopolymer that can be potentially utilized for color removal as well as COD reduction of an industrial anionic dye (remazol brilliant blue R, RBBR). The surface porosity, crystallinity, morphology, functionality, charge, and amine content of the CTS-GLY/KN were studied using BET, XRD, SEM, FTIR, pHpzc and pH-potentiometric titration analyses, respectively. Response surface methodology-Box-Behnken design (RSM-BBD) was used to optimize the impact of the main input factors on the color removal and COD reduction of RBBR. The adsorptive performance CTS-GLY/KN towards RBBR was well-defined by both Langmuir and Freundlich isotherm models with highest adsorption capacity of 447.1 mg/g at 30 ˚C. This finding reveals that CTS-GLY/KN can be utilized as a promising, feasible, and environmentally friendly composite-biosorbent for color removal and COD reduction of textile dyes from aqueous medium.


Author(s):  
N. O. Ilelaboye ◽  
A. A. Oderinde

Increased anthropogenic activities have led to serious environmental problems due to pollution caused by toxic materials such as heavy metals whose levels are rising in the environment. The inefficiency and high cost of conventional methods of waste treatment have prompted the investigation of environmentally friendly and cheaper methods of treatment using natural products. In this study, G. arborea leaves powder was investigated with a view of using it as cheap material for the biosorption of Pb2+ and Cd2+   from wastewater. The effects of operational parameters like pH, biosorbent dose [g/L], initial metal ions concentration [mg/L], contact time [minutes] and stirring speed [rpm] on the biosorption efficiency [%] were determined. The optimum solution pH for Pb2+ and Cd2+adsorption was 5.0 and peak adsorption of 91.33% and 82.53% for Pb2+ and Cd2+, respectively. 5 g/L Melina leaves were enough to achieve peak removal of both metal ions. The removal of the metal ions was comparatively quick, and stability was achieved after 30 minutes. The optimum stirring speed was 250 rpm for both metal ions. The uptake efficiency of the biosorbent was determined by Langmuir and Freundlich isotherm models. The value of Langmuir isotherm separation parameter [RL] of Pb2+ ion [0.0446 - 0.78125] and Cd2+ [0.1005- 0.9482] were within range of 0 -1 indicating favorable biosorption for both metal ions. The degree of non-linearity [n] values between Pb2+ [12.79] and Cd2+ [11.79] solution concentration and biosorption in Freundlich equation were greater than 1, indicating physical biosorption of Pb2+ and Cd2+ on to G. arborea leaves. G. arborea can serve as efficient biosorbent not only for Pb2+ and Cd2+ ions but also for other heavy metal ions in a wastewater stream


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Dong-Hui Cheng ◽  
Sheng-Ke Yang ◽  
Yue Zhao ◽  
Jing Chen

Adsorption behaviors of oxytetracycline onto sediment in the Weihe River were described. The impact factors in the processes of adsorption, such as contact time, solution pH, temperature, and ionic strength, were determined by experiments. The experimental results were analyzed by kinetic and isotherm models. The adsorption kinetics was found to follow a pseudo-first-order model. The equilibrium adsorption data fitted well with the Langmuir and Freundlich isotherm models. However, the Langmuir isotherm was more suitable to describe the adsorption. Thermodynamics parameters such as Gibbs-free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated. Results showed that the adsorption was feasible, spontaneous, entropy increasing, and endothermic in nature, which reached equilibrium in about 24 hours. The adsorption capacity did not cause obvious change at solution pH 4.0–7.0, and both decreased in solution pH 7.0–10.0 and 4.0–2.0. The presence of electrolytes such as NaCl in aqueous solution had a significant negative effect on the adsorption. The mechanisms controlling the adsorption were supposed to be chemisorption.


2009 ◽  
Vol 6 (3) ◽  
pp. 737-742 ◽  
Author(s):  
T. Santhi ◽  
S. Manonmani ◽  
S. Ravi

A new, low cost, locally available biomaterial was tested for its ability to remove cationic dyes from aqueous solution. A granule prepared from a mixture of leafs, fruits and twigs ofMuntingia calaburahad been utilized as a sorbent for uptake of three cationic dyes, methylene blue (MB), methylene red (MR) and malachite green (MG). The effects of various experimental parameters (e.g.,contact time, dye concentration, adsorbent dose and pH) were investigated and optimal experimental conditions were ascertained. Above the value of initial pH 6, three dyes studied could be removed effectively. The isothermal data fitted the Langmuir and Freundlich isotherm models for all three dyes sorption. The biosorption processes followed the pseudo-first order rate kinetics. The results in this study indicated thatMuntingia calaburawas an attractive candidate for removing cationic dyes from the dye wastewater.


2021 ◽  
Vol 8 (Supplement_1) ◽  
pp. S488-S489
Author(s):  
Charles P Gerba

Abstract Background The recent pandemic of CoVid19 has increased our need to assess the impact of disinfectants on the inactivation of human coronaviruses. The goals of this study were 1) quantify the disinfection of SARS-CoV-2 and human coronavirus 229 inactivations by various quaternary ammonium formulations, and 2) demonstrate the impact of disinfectants on preventing fomite-to-finger transfer of coronaviruses. Methods We compared the inactivation of both SARS-Covid -2 and coronavirus 229E suspended in 5% fetal calf sera and dried on both metal and plastic surfaces. In addition, studies were conducted with a silinated quaternary ammonium compound that left a residual on the surface. Studies were also conducted on the finger transfer of coronavirus from various surfaces. The virus was allowed to dry on the surface for 30 minutes, then a transfer was conducted by placing the finger pad directly onto the contaminated surface. The finger was tested for the virus. The study was then repeated with virus-contaminated porcelain surfaces that were sprayed with a quaternary product or placed on a surface with a quaternary ammonium compound that left a residual. Results Several readily available quaternary ammonium formulations were evaluated and proved to be effective with greater than a 99.9% reduction in titer after drying on both metal and plastic surfaces. In addition, a silinated quaternary ammonium compound that left a residual on the surface was capable of inactivating SARS-CoV-2 for at least seven days after application. Studies on the finger transfer of coronavirus from various surfaces showed that the amount of virus transfer to the finger varied from 0.46 to 49.0% depending upon the surface. Little or no virus transfer occurred from treated surfaces compared to the untreated controls. In addition, coronavirus 229E appears to be a good model for use in disinfection assessments for SARS-CoV-2. Conclusion Our results demonstrate that various quaternary ammonium disinfectant formulations are effective against human coronaviruses. Finger transfer tests showed that transmission of coronavirus from surfaces can be prevented, reducing the risk of fomite transmission. Coronavirus 229E appears to be a good model for use in disinfection assessments for SARS-CoV-2. Disclosures Charles P. Gerba, Ph.D., Allied Biosciences (Grant/Research Support)Behr (Grant/Research Support)Corning Inc. (Grant/Research Support)PPG (Grant/Research Support)Procter and Gamble (Other Financial or Material Support, donation)Rickett and Coleman (Grant/Research Support)


2019 ◽  
Vol 35 (6) ◽  
pp. 1774-1781
Author(s):  
Anusha Dhanagopal ◽  
Lingeswari Dheenathayalan ◽  
Vimala Thiyagarajan

The metal salt doped polyaniline has been used as adsorbent for the removal of synthetic dye. The influence of experimental parameters like association time, adsorbent dosage, agitating speed, pH and electrical conductivity on adsorption of Acid Red 88 was systematically investigated. More than 95% of Acid Red 88 was removed after 55 minutes of adsorbent/adsorbate contact time for 0.3g/L of PANI-CuCl2. Calculations have been carried out to analyse the impact of weight of PANI-CuCl2 composite and concentration of Acid Red 88 on the percentage of decolourisation. Kinetics and isotherm analysis were also carried out to describe the adsorption process. Electrical conductivity, SEM and FTIR technique were used to characterize the adsorbent before and after adsorption. The thermodynamic parameters like changes in free energy, enthalpy and entropy were also evolved to predict the nature of adsorption. The adsorbent is stable, easy to prepare and suitable to remove Acid Red 88 from effluent.


2017 ◽  
Vol 20 (1) ◽  
pp. 1-6 ◽  

<p>In this paper, the removal of Maxilon Red GRL by adsorption onto raw soil sample known as Niğde (Bor) grape molasses soil and Fe+2/H2O2 reagent as advanced treatment processes were investigated. The effects of various experimental parameters such as initial Fe+2 and H2O2 concentrations, pH, temperature, contact time, initial adsorbent dose, and initial dye concentration on adsorption and Fenton process efficiencies were studied in a batch reactor. The adsorption experimental data were modeled by Langmuir and Freundlich isotherm models. The data fitted well with the Langmuir isotherm (R2&gt;0.99). The optimum conditions had been determined and found that efficiency of decolorization obtained after 20 min of reaction, was about 99.4% for Fenton process.</p>


REAKTOR ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 117-124
Author(s):  
Hargono Hargono ◽  
Angga Mei Sarah ◽  
Feninda Nevrita ◽  
Bakti Jos

The sorption of Cu (II) particle from aqueous solution onto chitosan and cross-connected chitosan-bentonite (CTS-BTN) as adsorbent were conducted in batch conditions. The impact of different test parameters: starting pH, sorption time was assessed. Equilibrium studies have been completed to decide the limit of chitosan and CTS-BTN for Cu (II) particle. The Langmuir and Freundlich isotherm models were used in the examination of the trial information as linearized conditions. It was discovered that the isotherm information were all around portrayed by the Langmuir isotherm. Chitosan and CTS-BTN showed an adsorption capacity of 125 mg/g and 142.86 mg/g, respectively. The constant of adsorption rate was investigation utilizing a pseudo first order and a pseudo second order model. The pseudo second order model brought about the best fit with test information (R2= 0,991 for CTS and R2= 0,995 for CTS-BTN), additionally giving a constant rate k2, ads= 8.85 x 10-5 g/mg min for CTS and 3.72 x 10-4 g/mg min for CTS-BTN. Recommending that this model could be used in design and applications.Keywords:  adsorption; Cu(II) ion; chitosan; cross-linked; isotherm; kinetics


Sign in / Sign up

Export Citation Format

Share Document