scholarly journals Resveratrol, EGCG and Vitamins Modulate Activated T Lymphocytes

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5600
Author(s):  
Joseph Schwager ◽  
Nicole Seifert ◽  
Albine Bompard ◽  
Daniel Raederstorff ◽  
Igor Bendik

Vitamins and bioactives, which are constituents of the food chain, modulate T lymphocyte proliferation and differentiation, antibody production, and prevent inflammation and autoimmunity. We investigated the effects of vitamins (vitamin A (VA), D (VD), E (VE)) and bioactives (i.e., resveratrol (Res), epigallocatechin-3-gallate (EGCG)) on the adaptive immune response, as well as their synergistic or antagonistic interactions. Freshly isolated T lymphocytes from healthy individuals were activated with anti-CD3/CD28 antibodies for 4–5 days in the presence of bioactives and were analyzed by cytofluorometry. Interleukins, cytokines, and chemokines were measured by multiple ELISA. Gene expression was measured by quantitative RT-PCR. Res and EGCG increased CD4 surface intensity. EGCG led to an increased proportion of CD8+ lymphocytes. Anti-CD3/CD28 activation induced exuberant secretion of interleukins and cytokines by T lymphocyte subsets. VD strongly enhanced Th2 cytokines (e.g., IL-5, IL-13), whereas Res and EGCG favored secretion of Th1 cytokines (e.g., IL-2, INF-γ). Res and VD mutually influenced cytokine production, but VD dominated the cytokine secretion pattern. The substances changed gene expression of interleukins and cytokines in a similar way as they did secretion. Collectively, VD strongly modulated cytokine and interleukin production and favored Th2 functions. Resveratrol and EGCG promoted the Th1 response. VA and VE had only a marginal effect, but they altered both Th1 and Th2 response. In vivo, bioactives might therefore interact with vitamins and support the outcome and extent of the adaptive immune response.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Marta Ferreira-Gomes ◽  
Andrey Kruglov ◽  
Pawel Durek ◽  
Frederik Heinrich ◽  
Caroline Tizian ◽  
...  

AbstractThe pathogenesis of severe COVID-19 reflects an inefficient immune reaction to SARS-CoV-2. Here we analyze, at the single cell level, plasmablasts egressed into the blood to study the dynamics of adaptive immune response in COVID-19 patients requiring intensive care. Before seroconversion in response to SARS-CoV-2 spike protein, peripheral plasmablasts display a type 1 interferon-induced gene expression signature; however, following seroconversion, plasmablasts lose this signature, express instead gene signatures induced by IL-21 and TGF-β, and produce mostly IgG1 and IgA1. In the sustained immune reaction from COVID-19 patients, plasmablasts shift to the expression of IgA2, thereby reflecting an instruction by TGF-β. Despite their continued presence in the blood, plasmablasts are not found in the lungs of deceased COVID-19 patients, nor does patient IgA2 binds to the dominant antigens of SARS-CoV-2. Our results thus suggest that, in severe COVID-19, SARS-CoV-2 triggers a chronic immune reaction that is instructed by TGF-β, and is distracted from itself.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 283-283
Author(s):  
Mariana Álvarez Pérez ◽  
Carolina Robles-Rodriguez ◽  
Laura González Dávalos ◽  
Armando Shimada ◽  
Alfredo Varela ◽  
...  

Abstract During the first and second weeks of life, calves are extremely susceptible to enteric diseases, their digestive tract is developing and their thermoregulation is not adequate; these being some factors that can contribute to the lack of their weight gain (Hulbert & Moisá, 2016). In addition, they have a reduced capacity to generate an innate and adaptive immune response, in other words, they are still not immunocompetent (Costa et al., 2017; Hulbert & Moisá, 2016), since they are born with all the essential immune components but many of them are not functional until calves are at least 2 to 4 weeks old (Chase et al., 2008). With the aim to identify the development of the innate immune response through the expression of MyD88, TRAF6, NFKB1, and NFKB1a mRNA, in different ages and regions of the digestive tract, qPCR tests were held. Twelve Zebu crossbred calves of 0, 7, 28, and 42 days of age were sampled (three animals of each age). Tissue samples included: rumen, duodenum, and ileum. Gene expression was determined by quantitative PCR (qPCR). Changes in the expression of TRAF6, NFKB1 and NFKB1a mRNA were different in rumen and ileum (P < 0.05) at day 28 of age. MYD88 mRNA expression was different only in ileum (P < 0.05). MyD88, TRAF6, NFKB1, and NFKB1a mRNA expression of rumen tended to decrease and in the case of ileum to increase with age; however, this was until day 28 and not in the first week of life, as mentioned by some other authors.


2022 ◽  
Vol 23 (2) ◽  
pp. 911
Author(s):  
Andrea Hanel ◽  
Carsten Carlberg

Peripheral blood mononuclear cells (PBMCs) belong to the innate and adaptive immune system and are highly sensitive and responsive to changes in their systemic environment. In this study, we focused on the time course of transcriptional changes in freshly isolated human PBMCs 4, 8, 24 and 48 h after onset of stimulation with the active vitamin D metabolite 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3). Taking all four time points together, 662 target genes were identified and segregated either by time of differential gene expression into 179 primary and 483 secondary targets or by driver of expression change into 293 direct and 369 indirect targets. The latter classification revealed that more than 50% of target genes were primarily driven by the cells' response to ex vivo exposure than by the nuclear hormone and largely explained its down-regulatory effect. Functional analysis indicated vitamin D’s role in the suppression of the inflammatory and adaptive immune response by down-regulating ten major histocompatibility complex class II genes, five alarmins of the S100 calcium binding protein A family and by affecting six chemokines of the C-X-C motif ligand family. Taken together, studying time-resolved responses allows to better contextualize the effects of vitamin D on the immune system.


2019 ◽  
Author(s):  
Ayse U Akarca ◽  
Peter Ellery ◽  
Anthony W Segal ◽  
Teresa Marafioti

AbstractBackground and AimsT lymphocytes are found in abnormally large numbers in the bowel in Crohn’s disease. This has led to the assumption by some that these cells play a causal role in the pathogenesis of what has been labelled an autoimmune disease. An alternative explanation for their presence is that, as part of the adaptive immune system, the accumulation of these cells is not a primary phenomenon, but is a secondary adaptive immune response to faecal material in the bowel wall. To distinguish between these two processes we compared the T-cell repertoire in the bowel in Crohn’s with that in diverticulitis, where the primary pathology is mechanical, with a subsequent immune response to the accumulated faecal material.MethodsSix cases of Crohn’s disease and six patients with diverticulitis were studied. Dewaxed sections of bowel were stained with Anti-CD4, Anti-CD8, Anti-FOXP3 and Anti-CD25 to identify cytotoxic T-cells, NK-Tcells; T-helper and T-reg T-cells.ResultsNo differences were found in the distribution of the different T-cell markers in either the mucosa or in areas of inflammation in the two conditions.ConclusionThe accumulation of T-lymphocytes in the bowel in Crohn’s disease is likely to be a sign of an adaptive immune response to faecal material within the bowel rather than an indication of a primary causal immune attack on the bowel that produces the disease.


Author(s):  
Marta Ferreira-Gomes ◽  
Andrey Kruglov ◽  
Pawel Durek ◽  
Frederik Heinrich ◽  
Caroline Tizian ◽  
...  

Here we have analyzed the dynamics of the adaptive immune response triggered by SARS-CoV-2 in severely affected COVID-19 patients, as reflected by activated B cells egressing into the blood, at the single cell level. Early on, before seroconversion in response to SARS-CoV-2 spike protein, activated peripheral B cells displayed a type 1 interferon-induced gene expression signature. After seroconversion, activated B cells lost this signature, expressed IL-21- and TGF-β-induced gene expression signatures, and mostly IgG1 and IgA1. In the sustained immune reaction of the COVID-19 patients, until day 59, activated peripheral B cells shifted to expression of IgA2, reflecting instruction by TGF-β. Despite the continued generation of activated B cells, those cells were not found in the lungs of deceased COVID-19 patients, nor did the IgA2 bind to dominant antigens of SARS-CoV-2. In severe COVID-19, SARS-CoV-2 thus triggers a chronic immune reaction distracted from itself and instructed by TGF-β.


Author(s):  
Anika Bongaarts ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
Floor E. Jansen ◽  
Wim G. M. Spliet ◽  
...  

AbstractTuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


2021 ◽  
Author(s):  
Anika Bongaarts ◽  
Caroline Mijnsbergen ◽  
Jasper J. Anink ◽  
Floor E. Jansen ◽  
Wim G.M. Spliet ◽  
...  

Abstract Tuberous sclerosis complex (TSC) is a monogenic disorder caused by mutations in either the TSC1 or TSC2 gene, two key regulators of the mechanistic target of the rapamycin complex pathway. Phenotypically, this leads to growth and formation of hamartomas in several organs, including the brain. Subependymal giant cell astrocytomas (SEGAs) are low-grade brain tumors commonly associated with TSC. Recently, gene expression studies provided evidence that the immune system, the MAPK pathway and extracellular matrix organization play an important role in SEGA development. However, the precise mechanisms behind the gene expression changes in SEGA are still largely unknown, providing a potential role for DNA methylation. We investigated the methylation profile of SEGAs using the Illumina Infinium HumanMethylation450 BeadChip (SEGAs n = 42, periventricular control n = 8). The SEGA methylation profile was enriched for the adaptive immune system, T cell activation, leukocyte mediated immunity, extracellular structure organization and the ERK1 & ERK2 cascade. More interestingly, we identified two subgroups in the SEGA methylation data and show that the differentially expressed genes between the two subgroups are related to the MAPK cascade and adaptive immune response. Overall, this study shows that the immune system, the MAPK pathway and extracellular matrix organization are also affected on DNA methylation level, suggesting that therapeutic intervention on DNA level could be useful for these specific pathways in SEGA. Moreover, we identified two subgroups in SEGA that seem to be driven by changes in the adaptive immune response and MAPK pathway and could potentially hold predictive information on target treatment response.


Sign in / Sign up

Export Citation Format

Share Document