scholarly journals Hybrid Quinoline-Thiosemicarbazone Therapeutics as a New Treatment Opportunity for Alzheimer’s Disease‒Synthesis, In Vitro Cholinesterase Inhibitory Potential and Computational Modeling Analysis

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6573
Author(s):  
Sumera Zaib ◽  
Rubina Munir ◽  
Muhammad Tayyab Younas ◽  
Naghmana Kausar ◽  
Aliya Ibrar ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and the leading cause of dementia worldwide. The limited pharmacological approaches based on cholinesterase inhibitors only provide symptomatic relief to AD patients. Moreover, the adverse side effects such as nausea, vomiting, loss of appetite, muscle cramps, and headaches associated with these drugs and numerous clinical trial failures present substantial limitations on the use of medications and call for a detailed insight of disease heterogeneity and development of preventive and multifactorial therapeutic strategies on urgent basis. In this context, we herein report a series of quinoline-thiosemicarbazone hybrid therapeutics as selective and potent inhibitors of cholinesterases. A facile multistep synthetic approach was utilized to generate target structures bearing multiple sites for chemical modifications and establishing drug-receptor interactions. The structures of all the synthesized compounds were fully established using readily available spectroscopic techniques (FTIR, 1H- and 13C-NMR). In vitro inhibitory results revealed compound 5b as a promising and lead inhibitor with an IC50 value of 0.12 ± 0.02 μM, a 5-fold higher potency than standard drug (galantamine; IC50 = 0.62 ± 0.01 μM). The synergistic effect of electron-rich (methoxy) group and ethylmorpholine moiety in quinoline-thiosemicarbazone conjugates contributes significantly in improving the inhibition level. Molecular docking analysis revealed various vital interactions of potent compounds with amino acid residues and reinforced the in vitro results. Kinetics experiments revealed the competitive mode of inhibition while ADME properties favored the translation of identified inhibitors into safe and promising drug candidates for pre-clinical testing. Collectively, inhibitory activity data and results from key physicochemical properties merit further research to ensure the design and development of safe and high-quality drug candidates for Alzheimer’s disease.

2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2020 ◽  
Vol 20 (13) ◽  
pp. 1214-1234 ◽  
Author(s):  
Md. Tanvir Kabir ◽  
Md. Sahab Uddin ◽  
Bijo Mathew ◽  
Pankoj Kumar Das ◽  
Asma Perveen ◽  
...  

Background: Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the characteristics of this devastating disorder include the progressive and disabling deficits in the cognitive functions including reasoning, attention, judgment, comprehension, memory, and language. Objective: In this article, we have focused on the recent progress that has been achieved in the development of an effective AD vaccine. Summary: Currently, available treatment options of AD are limited to deliver short-term symptomatic relief only. A number of strategies targeting amyloid-beta (Aβ) have been developed in order to treat or prevent AD. In order to exert an effective immune response, an AD vaccine should contain adjuvants that can induce an effective anti-inflammatory T helper 2 (Th2) immune response. AD vaccines should also possess the immunogens which have the capacity to stimulate a protective immune response against various cytotoxic Aβ conformers. The induction of an effective vaccine’s immune response would necessitate the parallel delivery of immunogen to dendritic cells (DCs) and their priming to stimulate a Th2-polarized response. The aforesaid immune response is likely to mediate the generation of neutralizing antibodies against the neurotoxic Aβ oligomers (AβOs) and also anti-inflammatory cytokines, thus preventing the AD-related inflammation. Conclusion: Since there is an age-related decline in the immune functions, therefore vaccines are more likely to prevent AD instead of providing treatment. AD vaccines might be an effective and convenient approach to avoid the treatment-related huge expense.


Author(s):  
Hiroshi Mori

Alzheimer’s disease (AD), the most prevalent disease of aged people, is a progressive neurodegenerative disorder with dementia. Amyloid-ß (also known as ß-protein and referred to here as Aß) is a well-established, seminal peptide in AD that is produced from the amyloid precursor protein (APP) by consecutive digestion with the ß secretase of BACE (beta-site amyloid cleaving enzyme) and gamma secretase of the presenilin complex. Abnormal cerebral accumulation of Abeta in the form of insoluble fibrils in senile plaques and cerebral amyloid angiopathy (CAA) is a neuropathological hallmark of AD. In contrast to insoluble fibrillary Aß, a soluble oligomeric complex, ADDL, consists of low-n oligomers of Aß, such as Aß*56. Despite their different names, it is currently proposed that oligomeric Aß is directly involved in synaptic toxicity and cognitive dysfunction in the early stages of AD. This chapter identifies a novel APP mutation (E693delta; referred to as the Osaka mutation) in a pedigree with probable AD, resulting in a variant Aß lacking glutamate at position 22. Based on theoretical predictions and in vitro studies on synthetic mutant Aß peptides, the mutated Aß peptide showed a unique and enhanced oligomerization activity without fibrillization. This was further confirmed by PiB-PET analysis on the proband patient. Collectively, the chapter concludes that the Osaka mutation is the first human evidence for the hypothesis that oligomeric Aß is involved in AD.


2020 ◽  
Vol 13 ◽  
pp. 251686572095487
Author(s):  
Adam Schuller ◽  
Luke Montrose

Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.


Cells ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 2351 ◽  
Author(s):  
Veronika Prikhodko ◽  
Daria Chernyuk ◽  
Yurii Sysoev ◽  
Nikita Zernov ◽  
Sergey Okovityi ◽  
...  

Alzheimer’s disease and cerebral ischemia are among the many causative neurodegenerative diseases that lead to disabilities in the middle-aged and elderly population. There are no effective disease-preventing therapies for these pathologies. Recent in vitro and in vivo studies have revealed the TRPC6 channel to be a promising molecular target for the development of neuroprotective agents. TRPC6 channel is a non-selective cation plasma membrane channel that is permeable to Ca2+. Its Ca2+-dependent pharmacological effect is associated with the stabilization and protection of excitatory synapses. Downregulation as well as upregulation of TRPC6 channel functions have been observed in Alzheimer’s disease and brain ischemia models. Thus, in order to protect neurons from Alzheimer’s disease and cerebral ischemia, proper TRPC6 channels modulators have to be used. TRPC6 channels modulators are an emerging research field. New chemical structures modulating the activity of TRPC6 channels are being currently discovered. The recent publication of the cryo-EM structure of TRPC6 channels should speed up the discovery process even more. This review summarizes the currently available information about potential drug candidates that may be used as basic structures to develop selective, highly potent TRPC6 channel modulators to treat neurodegenerative disorders, such as Alzheimer’s disease and cerebral ischemia.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sergio Davinelli ◽  
Nadia Sapere ◽  
Davide Zella ◽  
Renata Bracale ◽  
Mariano Intrieri ◽  
...  

Alzheimer’s disease (AD) is a severe chronic neurodegenerative disorder of the brain characterised by progressive impairment in memory and cognition. In the past years an intense research has aimed at dissecting the molecular events of AD. However, there is not an exhaustive knowledge about AD pathogenesis and a limited number of therapeutic options are available to treat this neurodegenerative disease. Consequently, considering the heterogeneity of AD, therapeutic agents acting on multiple levels of the pathology are needed. Recent findings suggest that phytochemicals compounds with neuroprotective features may be an important resources in the discovery of drug candidates against AD. In this paper we will describe some polyphenols and we will discuss their potential role as neuroprotective agents. Specifically, curcumin, catechins, and resveratrol beyond their antioxidant activity are also involved in antiamyloidogenic and anti-inflammatory mechanisms. We will focus on specific molecular targets of these selected phytochemical compounds highlighting the correlations between their neuroprotective functions and their potential therapeutic value in AD.


2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Qiutian Jia ◽  
Yulin Deng ◽  
Hong Qing

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder with two hallmarks:β-amyloid plagues and neurofibrillary tangles. It is one of the most alarming illnesses to elderly people. No effective drugs and therapies have been developed, while mechanism-based explorations of therapeutic approaches have been intensively investigated. Outcomes of clinical trials suggested several pitfalls in the choice of biomarkers, development of drug candidates, and interaction of drug-targeted molecules; however, they also aroused concerns on the potential deficiency in our understanding of pathogenesis of AD, and ultimately stimulated the advent of novel drug targets tests. The anticipated increase of AD patients in next few decades makes development of better therapy an urgent issue. Here we attempt to summarize and compare putative therapeutic strategies that have completed clinical trials or are currently being tested from various perspectives to provide insights for treatments of Alzheimer’s disease.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tammaryn Lashley ◽  
Maria-Armineh Tossounian ◽  
Neve Costello Heaven ◽  
Samantha Wallworth ◽  
Sew Peak-Chew ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.


Sign in / Sign up

Export Citation Format

Share Document