scholarly journals Extensive Anti-CoA Immunostaining in Alzheimer’s Disease and Covalent Modification of Tau by a Key Cellular Metabolite Coenzyme A

2021 ◽  
Vol 15 ◽  
Author(s):  
Tammaryn Lashley ◽  
Maria-Armineh Tossounian ◽  
Neve Costello Heaven ◽  
Samantha Wallworth ◽  
Sew Peak-Chew ◽  
...  

Alzheimer’s disease (AD) is a neurodegenerative disorder, accounting for at least two-thirds of dementia cases. A combination of genetic, epigenetic and environmental triggers is widely accepted to be responsible for the onset and development of AD. Accumulating evidence shows that oxidative stress and dysregulation of energy metabolism play an important role in AD pathogenesis, leading to neuronal dysfunction and death. Redox-induced protein modifications have been reported in the brain of AD patients, indicating excessive oxidative damage. Coenzyme A (CoA) is essential for diverse metabolic pathways, regulation of gene expression and biosynthesis of neurotransmitters. Dysregulation of CoA biosynthesis in animal models and inborn mutations in human genes involved in the CoA biosynthetic pathway have been associated with neurodegeneration. Recent studies have uncovered the antioxidant function of CoA, involving covalent protein modification by this cofactor (CoAlation) in cellular response to oxidative or metabolic stress. Protein CoAlation has been shown to both modulate the activity of modified proteins and protect cysteine residues from irreversible overoxidation. In this study, immunohistochemistry analysis with highly specific anti-CoA monoclonal antibody was used to reveal protein CoAlation across numerous neurodegenerative diseases, which appeared particularly frequent in AD. Furthermore, protein CoAlation consistently co-localized with tau-positive neurofibrillary tangles, underpinning one of the key pathological hallmarks of AD. Double immunihistochemical staining with tau and CoA antibodies in AD brain tissue revealed co-localization of the two immunoreactive signals. Further, recombinant 2N3R and 2N4R tau isoforms were found to be CoAlated in vitro and the site of CoAlation mapped by mass spectrometry to conserved cysteine 322, located in the microtubule binding region. We also report the reversible H2O2-induced dimerization of recombinant 2N3R, which is inhibited by CoAlation. Moreover, CoAlation of transiently expressed 2N4R tau was observed in diamide-treated HEK293/Pank1β cells. Taken together, this study demonstrates for the first time extensive anti-CoA immunoreactivity in AD brain samples, which occurs in structures resembling neurofibrillary tangles and neuropil threads. Covalent modification of recombinant tau at cysteine 322 suggests that CoAlation may play an important role in protecting redox-sensitive tau cysteine from irreversible overoxidation and may modulate its acetyltransferase activity and functional interactions.

2020 ◽  
Vol 18 (4) ◽  
pp. 354-359
Author(s):  
Shirin Tarbiat ◽  
Azize Simay Türütoğlu ◽  
Merve Ekingen

Alzheimer's disease is a neurodegenerative disorder characterized by memory loss and impairment of language. Alzheimer's disease is strongly associated with oxidative stress and impairment in the cholinergic pathway, which results in decreased levels of acetylcholine in certain areas of the brain. Hence, inhibition of acetylcholinesterase activity has been recognized as an acceptable treatment against Alzheimer's disease. Nature provides an array of bioactive compounds, which may protect against free radical damage and inhibit acetylcholinesterase activity. This study compares the in vitro antioxidant and anticholinesterase activities of hydroalcoholic extracts of five cultivars of Rosa Damascena Mill. petals (R. damascena 'Bulgarica', R. damascena 'Faik', R. damascena 'Iranica', R. damascena 'Complex-635' and R. damascena 'Complex-637') from Isparta, Turkey. The antioxidant activities of the hydroalcoholic extracts were tested for ferric ion reduction and DPPH radical scavenging activities. The anti-acetylcholinesterase activity was also evaluated. All rose cultivars showed a high potency for scavenging free radical and inhibiting acetylcholinesterase activity. There was a significant correlation between antioxidant and acetylcholinesterase inhibitory activity. Among cultivars, Complex-635 showed the highest inhibitory effect with an IC50 value of 3.92 µg/mL. Our results suggest that all these extracts may have the potential to treat Alzheimer's disease with Complex-635 showing more promise.


2020 ◽  
Vol 17 ◽  
Author(s):  
Reem Habib Mohamad Ali Ahmad ◽  
Marc Fakhoury ◽  
Nada Lawand

: Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the progressive loss of neurons leading to cognitive and memory decay. The main signs of AD include the irregular extracellular accumulation of amyloidbeta (Aβ) protein in the brain and the hyper-phosphorylation of tau protein inside neurons. Changes in Aβ expression or aggregation are considered key factors in the pathophysiology of sporadic and early-onset AD and correlate with the cognitive decline seen in patients with AD. Despite decades of research, current approaches in the treatment of AD are only symptomatic in nature and are not effective in slowing or reversing the course of the disease. Encouragingly, recent evidence revealed that exposure to electromagnetic fields (EMF) can delay the development of AD and improve memory. This review paper discusses findings from in vitro and in vivo studies that investigate the link between EMF and AD at the cellular and behavioural level, and highlights the potential benefits of EMF as an innovative approach for the treatment of AD.


2018 ◽  
Vol 15 (4) ◽  
pp. 313-335 ◽  
Author(s):  
Serena Marcelli ◽  
Massimo Corbo ◽  
Filomena Iannuzzi ◽  
Lucia Negri ◽  
Fabio Blandini ◽  
...  

Background: Alzheimer's disease (AD) is a neurodegenerative disorder recognized as the most common cause of chronic dementia among the ageing population. AD is histopathologically characterized by progressive loss of neurons and deposits of insoluble proteins, primarily composed of amyloid-β pelaques and neurofibrillary tangles (NFTs). Methods: Several molecular processes contribute to the formation of AD cellular hallmarks. Among them, post-translational modifications (PTMs) represent an attractive mechanism underlying the formation of covalent bonds between chemical groups/peptides to target proteins, which ultimately result modified in their function. Most of the proteins related to AD undergo PTMs. Several recent studies show that AD-related proteins like APP, Aβ, tau, BACE1 undergo post-translational modifications. The effect of PTMs contributes to the normal function of cells, although aberrant protein modification, which may depend on many factors, can drive the onset or support the development of AD. Results: Here we will discuss the effect of several PTMs on the functionality of AD-related proteins potentially contributing to the development of AD pathology. Conclusion: We will consider the role of Ubiquitination, Phosphorylation, SUMOylation, Acetylation and Nitrosylation on specific AD-related proteins and, more interestingly, the possible interactions that may occur between such different PTMs.


Author(s):  
Hiroshi Mori

Alzheimer’s disease (AD), the most prevalent disease of aged people, is a progressive neurodegenerative disorder with dementia. Amyloid-ß (also known as ß-protein and referred to here as Aß) is a well-established, seminal peptide in AD that is produced from the amyloid precursor protein (APP) by consecutive digestion with the ß secretase of BACE (beta-site amyloid cleaving enzyme) and gamma secretase of the presenilin complex. Abnormal cerebral accumulation of Abeta in the form of insoluble fibrils in senile plaques and cerebral amyloid angiopathy (CAA) is a neuropathological hallmark of AD. In contrast to insoluble fibrillary Aß, a soluble oligomeric complex, ADDL, consists of low-n oligomers of Aß, such as Aß*56. Despite their different names, it is currently proposed that oligomeric Aß is directly involved in synaptic toxicity and cognitive dysfunction in the early stages of AD. This chapter identifies a novel APP mutation (E693delta; referred to as the Osaka mutation) in a pedigree with probable AD, resulting in a variant Aß lacking glutamate at position 22. Based on theoretical predictions and in vitro studies on synthetic mutant Aß peptides, the mutated Aß peptide showed a unique and enhanced oligomerization activity without fibrillization. This was further confirmed by PiB-PET analysis on the proband patient. Collectively, the chapter concludes that the Osaka mutation is the first human evidence for the hypothesis that oligomeric Aß is involved in AD.


2020 ◽  
Vol 13 ◽  
pp. 251686572095487
Author(s):  
Adam Schuller ◽  
Luke Montrose

Woodsmoke poses a significant health risk as a growing component of ambient air pollution in the United States. While there is a long history of association between woodsmoke exposure and diseases of the respiratory, circulatory, and cardiovascular systems, recent evidence has linked woodsmoke exposure to cognitive dysfunction, including Alzheimer’s disease dementia. Alzheimer’s disease is a progressive neurodegenerative disorder with largely idiopathic origins and no known cure. Here, we explore the growing body of literature which relates woodsmoke-generated and ambient air pollution particulate matter exposure to Alzheimer’s disease (AD) onset or exacerbation, in the context of an inflammation-centric view of AD. Epigenetic modifications, specifically changes in DNA methylation patterns, are well documented following woodsmoke exposure and have been shown to influence disease-favoring inflammatory cascades, induce oxidative stress, and modulate the immune response in vitro, in vivo, and in humans following exposure to air pollution. Though the current status of the literature does not allow us to draw definitive conclusions linking these events, this review highlights the need for additional work to fill gaps in our understanding of the directionality, causality, and susceptibility throughout the life course.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Troy T. Rohn

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by a progressive loss of memory and cognitive skills. Although much attention has been devoted concerning the contribution of the microscopic lesions, senile plaques, and neurofibrillary tangles to the disease process, inflammation has long been suspected to play a major role in the etiology of AD. Recently, a novel variant in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has been identified that has refocused the spotlight back onto inflammation as a major contributing factor in AD. Variants in TREM2 triple one's risk of developing late-onset AD. TREM2 is expressed on microglial cells, the resident macrophages in the CNS, and functions to stimulate phagocytosis on one hand and to suppress cytokine production and inflammation on the other hand. The purpose of this paper is to discuss these recent developments including the potential role that TREM2 normally plays and how loss of function may contribute to AD pathogenesis by enhancing oxidative stress and inflammation within the CNS. In this context, an overview of the pathways linking beta-amyloid, neurofibrillary tangles (NFTs), oxidative stress, and inflammation will be discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Donna M. Wilcock

Alzheimer's disease (AD) is a complex, neurodegenerative disorder characterized by the presence of amyloid plaques and neurofibrillary tangles in the brain. Glial cells, particularly microglial cells, react to the presence of the amyloid plaques and neurofibrillary tangles producing an inflammatory response. While once considered immunologically privileged due to the blood-brain barrier, it is now understood that the glial cells of the brain are capable of complex inflammatory responses. This paper will discuss the published literature regarding the diverse roles of neuroinflammation in the modulation of AD pathologies. These data will then be related to the well-characterized macrophage phenotypes. The conclusion is that the glial cells of the brain are capable of a host of macrophage responses, termed M1, M2a, M2b, and M2c. The relationship between these states and AD pathologies remains relatively understudied, yet published data using various inflammatory stimuli provides some insight. It appears that an M1-type response lowers amyloid load but exacerbates neurofibrillary tangle pathology. In contrast, M2a is accompanied by elevated amyloid load and appears to ameliorate, somewhat, neurofibrillary pathology. Overall, it is clear that more focused, cause-effect studies need to be performed to better establish how each inflammatory state can modulate the pathologies of AD.


2018 ◽  
Vol 17 (1) ◽  
pp. 54-68 ◽  
Author(s):  
Kanzal Iman ◽  
Muhammad Usman Mirza ◽  
Nauman Mazhar ◽  
Michiel Vanmeert ◽  
Imran Irshad ◽  
...  

Objective and Background: Inhibition of acetylcholinesterase (AChE) has gained much importance since the discovery of the involvement of peripheral anionic site as an allosteric regulator of AChE. Characterized by the formation of β-amyloid plaques, Alzheimer's disease (AD) is currently one of the leading causes of death across the world. Progression in this neurodegenerative disorder causes deficit in the cholinergic activity that leads towards cognitive decline. Therapeutic interventions in AD are largely focused upon AChE inhibitors designed essentially to prevent the loss of cholinergic function. The multifactorial AD pathology calls for Multitarget-directed ligands (MTDLs) to follow up on various components of the disease. Considering this approach, other related AD targets were also selected. Structure-based virtual screening was relied upon for the identification of lead compounds with anti-AD effect. Method: Several chemoinformatics approaches were used in this study, reporting four multi-target inhibitors: MCULE-7149246649-0-1, MCULE-6730554226-0-4, MCULE-1176268617-0-6 and MCULE-8592892575-0-1 with high binding energies that indicate better AChE inhibitory activity. Additional in-silico analysis hypothesized the abundant presence of aromatic interactions to be pivotal for interaction of selected compounds to the acetyl-cholinesterase. Additionally, we presented an alternative approach to determine protein-ligand stability by calculating the Gibbs-free energy change over time. Furthermore, this allows to rank potential hits for further in-vitro testing. Results and Conclusion: With no predicted indication of adverse effects on humans, this study unravels four active multi-target inhibitors against AChE with promising affinities and good ADMET profile for the potential use in AD treatment.


2021 ◽  
Vol 22 (13) ◽  
pp. 6841
Author(s):  
Jaydeep Roy ◽  
Ka Chun Tsui ◽  
Jonah Ng ◽  
Man-Lung Fung ◽  
Lee Wei Lim

Alzheimer’s disease is a neurodegenerative disorder associated with age, and is characterized by pathological markers such as amyloid-beta plaques and neurofibrillary tangles. Symptoms of AD include cognitive impairments, anxiety and depression. It has also been shown that individuals with AD have impaired neurotransmission, which may result from the accumulation of amyloid plaques and neurofibrillary tangles. Preclinical studies showed that melatonin, a monoaminergic neurotransmitter released from the pineal gland, is able to ameliorate AD pathologies and restore cognitive impairments. Theoretically, inhibition of the pathological progression of AD by melatonin treatment should also restore the impaired neurotransmission. This review aims to explore the impact of AD on neurotransmission, and whether and how melatonin can enhance neurotransmission via improving AD pathology.


2021 ◽  
Vol 43 (1) ◽  
pp. 197-214
Author(s):  
Serena Silvestro ◽  
Luigi Chiricosta ◽  
Agnese Gugliandolo ◽  
Renato Iori ◽  
Patrick Rollin ◽  
...  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and represents the most common form of senile dementia. Autophagy and mitophagy are cellular processes that play a key role in the aggregation of β-amyloid (Aβ) and tau phosphorylation. As a consequence, impairment of these processes leads to the progression of AD. Thus, interest is growing in the search for new natural compounds, such as Moringin (MOR), with neuroprotective, anti-amyloidogenic, antioxidative, and anti-inflammatory properties that could be used for AD prevention. However, MOR appears to be poorly soluble and stable in water. To increase its solubility MOR was conjugated with α-cyclodextrin (MOR/α-CD). In this work, it was evaluated if MOR/α-CD pretreatment was able to exert neuroprotective effects in an AD in vitro model through the evaluation of the transcriptional profile by next-generation sequencing (NGS). To induce the AD model, retinoic acid-differentiated SH-SY5Y cells were exposed to Aβ1-42. The MOR/α-CD pretreatment reduced the expression of the genes which encode proteins involved in senescence, autophagy, and mitophagy processes. Additionally, MOR/α-CD was able to induce neuronal remodeling modulating the axon guidance, principally downregulating the Slit/Robo signaling pathway. Noteworthy, MOR/α-CD, modulating these important pathways, may induce neuronal protection against Aβ1-42 toxicity as demonstrated also by the reduction of cleaved caspase 3. These data indicated that MOR/α-CD could attenuate the progression of the disease and promote neuronal repair.


Sign in / Sign up

Export Citation Format

Share Document