scholarly journals Jabuticaba (Myrciaria jaboticaba) Peel as a Sustainable Source of Anthocyanins and Ellagitannins Delivered by Phospholipid Vesicles for Alleviating Oxidative Stress in Human Keratinocytes

Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6697
Author(s):  
Ines Castangia ◽  
Maria Letizia Manca ◽  
Mohamad Allaw ◽  
Jarkko Hellström ◽  
Daniel Granato ◽  
...  

The Brazilian berry scientifically known as jabuticaba is a fruit covered by a dark purple peel that is still rich in bioactives, especially polyphenols. Considering that, this work was aimed at obtaining an extract from the peel of jabuticaba fruits, identifying its main components, loading it in phospholipid vesicles specifically tailored for skin delivery and evaluating their biological efficacy. The extract was obtained by pressurized hot water extraction (PHWE), which is considered an easy and low dissipative method, and it was rich in polyphenolic compounds, especially flavonoids (ortho-diphenols and condensed tannins), anthocyanins (cyanidin 3-O-glucoside and delphinidin 3-O-glucoside) and gallic acid, which were responsible for the high antioxidant activity detected using different colorimetric methods (DPPH, FRAP, CUPRAC and metal chelation). To improve the stability and extract effectiveness, it was incorporated into ultradeformable phospholipid vesicles (transfersomes) that were modified by adding two different polymers (hydroxyethyl cellulose and sodium hyaluronate), thus obtaining HEcellulose-transfersomes and hyaluronan-transfersomes. Transfersomes without polymers were the smallest, as the addition of the polymer led to the formation of larger vesicles that were more stable in storage. The incorporation of the extract in the vesicles promoted their beneficial activities as they were capable, to a greater extent than the solution used as reference, of counteracting the toxic effect of hydrogen peroxide and even of speeding up the healing of a wound performed in a cell monolayer, especially when vesicles were enriched with polymers. Given that, polymer enriched vesicles may represent a good strategy to produce cosmetical and cosmeceutical products with beneficial properties for skin.

2021 ◽  
Vol 11 (15) ◽  
pp. 7060
Author(s):  
Antonia Mancuso ◽  
Maria Chiara Cristiano ◽  
Massimo Fresta ◽  
Daniele Torella ◽  
Donatella Paolino

Ethosomes® are one of the main deformable vesicles proposed to overcome the stratum corneum. They are composed of lecithin, ethanol and water, resulting in round vesicles characterized by a narrow size distribution and a negative surface charge. Taking into account their efficiency to deliver drugs into deeper skin layers, the current study was designed to evaluate the influence of different lipids on the physico-chemical features of traditional ethosomes in the attempt to influence their fate. Three lipids (DOPE, DSPE and DOTAP) were used for the study, but only DOTAP conferred a net positive charge to ethosomes, maintaining a narrow mean size lower than 300 nm and a good polydispersity index. Stability and in vitro cytotoxic studies have been performed using Turbiscan Lab analysis and MTT dye exclusion assay, respectively. Data recorded demonstrated the good stability of modified ethosomes and a reasonable absence of cell mortality when applied to human keratinocytes, NCTC 2544, which are used as a cell model. Finally, the best formulations were selected to evaluate their ability to encapsulate drugs, through the use of model compounds. Cationic ethosomes encapsulated oil red o and rhodamine b in amounts comparable to those recorded from conventional ethosomes (over 50%). Results recorded from this study are encouraging as cationic ethosomes may open new opportunities for skin delivery.


2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Nam Young Kim ◽  
Woon Yong Choi ◽  
Soo Jin Heo ◽  
Do Hyung Kang ◽  
Hyeon Yong Lee

Objectives. This work aimed to enhance anti-skin cancer activities of Apostichopus japonicus, spiky sea cucumber, through ultrasonification extraction process at low temperature. Methods. Dried Apostichopus japonicus was extracted with an ultrasonification process at 50°C and 95 kHz for two hours (UE), and anti-skin cancer activities of the extract from the UE were also compared with those from conventional extraction processes using hot water (WE) or 70% ethanol at 80°C (EE) for 12 hours. Results. The amount of canthaxanthin in the UE was higher than that in the WE or EE, and its cytotoxicity against human keratinocytes was less than the others. The extract from the UE showed 93.5% inhibition against human malignant cell growth, which was also higher than those from both WE and EE. The extract from the UE demonstrated the ability of inhibiting both cancer cell proliferation and metastasis by downregulating the skin tumor-promoting genes such as Bcl-2, STAT3, and MMP-9. Conclusions. The ultrasonification process was proved to be effective especially in extracting heat-sensitive marine biomass, A. japonicus having higher amounts of canthaxanthin and better anti-skin cancer activities, possibly due to less destruction and high elution of bioactive substances under low temperature extraction condition.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Mohamad Allaw ◽  
Maria Letizia Manca ◽  
Juan Carmelo Gómez-Fernández ◽  
Josè Luis Pedraz ◽  
Maria Carmen Terencio ◽  
...  

Aim: Collagen-enriched transfersomes, glycerosomes and glytransfersomes were specifically tailored for skin delivery of oleuropein. Methods: Vesicles were prepared by direct sonication and their main physicochemical and technological properties were measured. Biocompatibility, protective effect and promotion of the healing of a wounded cell monolayer were tested in vitro using fibroblasts. Results: Vesicles were mainly multicompartment, small (∼108 nm), slightly polydispersed (approximately 0.27) and negatively charged (~-49 mV). Oleuropein was incorporated in high amounts (approximately 87%) and vesicles were stable during four months of storage. In vitro studies confirmed the low toxicity of formulations (viability ≥95%), their effectiveness in counteracting nitric oxide generation and damages caused by free oxygen radicals, especially when collagen glytransfersomes were used (viability ~100%). These vesicles also promoted the regeneration of a wounded area by promoting the proliferation and migration of fibroblasts. Conclusion: Collagen-enriched vesicles are promising formulations capable of speeding up the healing of the wounded skin.


2019 ◽  
Vol 111 ◽  
pp. 06016
Author(s):  
Nikolajs Bogdanovs ◽  
Romualds Beļinskis ◽  
Ernests Petersons ◽  
Andris Krūmiņš ◽  
Artūrs Brahmanis

The analysis of a problem of development of control systems for objects with big time delay is carried out in this work. For such objects it is difficult to provide high-quality control, because the control is carried on the last status of object’s output. The main setup methods of PID regulators have been examined. Based on this analysis the technique of complete synthesis of the regulator of higher level is given in order to regulate building’s heating system. This work offers a new method of object’s control with distributed delay. As the test bed for the offered structure of control the valve of hot water supply in a heat-node is used. Using the test bed the stability of the system with time delay have been studied, which is controlled by the PID-regulator assisted by Smith Predictor used to compensate the dead time.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3366 ◽  
Author(s):  
Jihua Xu ◽  
Xinxin Li ◽  
Shifeng Liu ◽  
Peilei Zhao ◽  
Heqiang Huo ◽  
...  

Red-fleshed apple (Malus sieversii f. neidzwetzkyana (Dieck) Langenf) has attracted more and more attention due to its enriched anthocyanins and high antioxidant activity. In this study we extracted total anthocyanins and phenols from two types of red-fleshed apples—Xinjing No.4 (XJ4) and Red Laiyang (RL)—to study the stability and antioxidant activity of anthocyanins after encapsulation onto Corn Starch Nanoparticles (CSNPs). The results indicated the anthocyanins and total phenol levels of XJ4 were 2.96 and 2.25 times higher than those of RL respectively. The anthocyanin concentration and loading time had a significant effect on CSNPs encapsulation, and XJ4 anthocyanins always showed significantly higher loading capacity than RL. After encapsulation, the morphology of RL-CSNPs and XJ4-CSNPs was still spherical with a smooth surface as CSNPs, but the particle size increased compared to CSNPs especially for RL-CSNPs. Different stress treatments including UV light, pH, temperature, and salinity suggested that XJ4-CSNPs exhibited consistently higher stability than RL-CSNPs. A significantly enhanced free radical scavenging rate under stress conditions was observed, and XJ4-CSNPs had stronger antioxidant activity than RL-CSNPs. Furthermore, XJ4-CSNPs exhibited a slower released rate than RL-CSNPs in simulated gastric (pH 2.0) and intestinal (pH 7.0) environments. Our research suggests that nanocrystallization of anthocyanins is an effective method to keep the anthocyanin ingredients intact and active while maintaining a slow release rate. Compared to RL, encapsulation of XJ4 anthocyanins has more advantages, which might be caused by the significant differences in the metabolites of XJ4. These findings give an insight into understanding the role of nanocrystallization using CSNPs in enhancing the antioxidant ability of anthocyanins from different types of red-fleshed apples, and provide theoretical foundations for red-fleshed apple anthocyanin application.


2020 ◽  
Vol 103 (5) ◽  
pp. 1394-1399 ◽  
Author(s):  
Congmei Cao ◽  
Wei Liu ◽  
Silva Babajanian ◽  
Yanjun Zhang ◽  
Peter Chang ◽  
...  

Abstract Background Cinnamon is a popular spice used in food products. Its flavor varies by its chemical profile. Cinnamon flavoring powder is a unique form of material with essential oil encapsulated in wall material, which improves the stability and homogeneity but also increases the difficulties for analysis. A specific and rapid method is needed to analyze the main components for its quality and safety. Objective An analytical method for the quantification of cinnamon flavoring powder was developed and validated. The characteristic components for analysis were selected as coumarin, trans-cinnamic acid, trans-cinnamaldehyde, and eugenol. Methods This quantitation method with ultra-performance liquid chromatography coupled with diode array detector analysis was achieved by material extraction followed by chromatographic separation on C18 columns eluted with a gradient acetonitrile-water mobile phase. The detected wavelength was determined as 280 nm. Results Linear regression of calibration curves for each component was validated (R2 > 0.9995). The specificity, LOD and LOQ, precision, accuracy, and ruggedness of the developed method were also evaluated. Conclusions Such an approach is applicable for the simultaneous determination of these four characteristic constituents in cinnamon flavoring powder used in manufacturing and quality control of nutritional products. Highlights This study describes the selection of four components for analysis, the efficient extraction of them from cinnamon flavoring powder, and the rapid quantitation of these four characteristic components in these materials.


2010 ◽  
Vol 5 (No. 2) ◽  
pp. 58-68
Author(s):  
S. Kužel ◽  
L. Kolář ◽  
J. Gergel ◽  
J. Peterka ◽  
J. Borová-Batt

: In average samples of three sandy-loamy acid Cambisols from a South Bohemian area labile organic matters were determined by the permangate method modified by the dichromate method, and the rate constant of their biochemical oxidation was determined in hot water extracts of the samples. The need of liming was determined by means of 2 methods. In soil solutions of these samples, all values necessary to evaluate their calcium carbonate equilibriums were determined. The soil samples were enriched with 3% of dry matter of two organic materials, farmyard manure and meadow clover meal, and were incubated at 25&deg;C for 180 days under wetting above 50% of their retention water capacity, and after this procedure all analyses were repeated. Both methods were found to increase the need of liming in all three soils: the more labile the organic matter in 3% addition, the higher the need. The meadow clover matter was more labile than the farmyard manure matter. All three methods for the study of soil carbon lability yielded similar results while the potassium permanganate method was more sensitive than the dichromate one. Increases were observed in equilibrium [Cr(H<sub>2</sub>CO<sub>3</sub>* )] and in Langelier saturation index I<sub>s</sub>. This means that soil liming cannot be considered only as an adjustment to the soil acidity and supply of calcium to plants to meet their requirements, but also as a replacement of the spontaneous adjustment to calcium carbonate equilibrium of soil water, for which through mineralisation of labile organic matters in conditions of our experiment about 220 kg CaCO<sub>3</sub> per hectare of land were consumed on condition that it was not necessary to re-establish it. The process of Ca-compound consumption to establish the calcium carbonate equilibrium is controlled exclusively by the degree of mineralising organic matters lability while the influence of soil properties is only marginal. The same results were provided by the comparison of calcium carbonate equilibriums in nine &Scaron;umava brooks of the total watershed area 78 564 km<sup>2</sup> with the degree of lability of organic matters in their sediments in 1986, 2001 and 2004. A reduction in the intensity of agricultural production in 1986&ndash;2004 resulted in an increase in the stability of organic matters in the sediments, in a decrease in I<sub>s</sub>, and in a lower corrosivity of brooks water towards CaCO<sup>3</sup>. However, the quality of soils and their potential soil fertility decreased due to the loss of labile organic matters.


1996 ◽  
Vol 134 (1) ◽  
pp. 149-163 ◽  
Author(s):  
H A Müller ◽  
E Wieschaus

Cellularization of the Drosophila embryo results in the formation of a cell monolayer with many characteristics of a polarized epithelium. We have used antibodies specific to cellular junctions and nascent plasma membranes to study the formation of the zonula adherens (ZA) in relation to the establishment of basolateral membrane polarity. The same approach was then used as a test system to identify X-linked zygotically active genes required for ZA formation. We show that ZA formation begins during cellularization and that the basolateral membrane domain is established at mid-gastrulation. By creating deficiencies for defined regions of the X chromosome, we have identified genes that are required for the formation of the ZA and the generation of basolateral membrane polarity. We show that embryos mutant for both stardust (sdt) and bazooka (baz) fail to form a ZA. In addition to the failure to establish the ZA, the formation of the monolayered epithelium is disrupted after cellularization, resulting in formation of a multilayered cell sheet by mid-gastrulation. SEM analysis of mutant embryos revealed a conversion of cells exhibiting epithelial characteristics into cells exhibiting mesenchymal characteristics. To investigate how mutations that affect an integral component of the ZA itself influence ZA formation, we examined embryos with reduced maternal and zygotic supply of wild-type Arm protein. These embryos, like embryos mutant for both sdt and baz, exhibit an early disruption of ZA formation. These results suggest that early stages in the assembly of the ZA are critical for the stability of the polarized blastoderm epithelium.


2013 ◽  
Vol 24 (2) ◽  
pp. 85-99 ◽  
Author(s):  
Ting-Xi Yu ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Liu ◽  
Lan Xiao ◽  
...  

RNA-binding proteins CUG-binding protein 1 (CUGBP1) and HuR are highly expressed in epithelial tissues and modulate the stability and translation of target mRNAs. Here we present evidence that CUGBP1 and HuR jointly regulate the translation of occludin and play a crucial role in the maintenance of tight junction (TJ) integrity in the intestinal epithelial cell monolayer. CUGBP1 and HuR competed for association with the same occludin 3′-untranslated region element and regulated occludin translation competitively and in opposite directions. CUGBP1 overexpression decreased HuR binding to occludin mRNA, repressed occludin translation, and compromised the TJ barrier function, whereas HuR overexpression inhibited CUGBP1 association with occludin mRNA and promoted occludin translation, thereby enhancing the barrier integrity. Repression of occludin translation by CUGBP1 was due to the colocalization of CUGBP1 and tagged occludin RNA in processing bodies (P-bodies), and this colocalization was prevented by HuR overexpression. These findings indicate that CUGBP1 represses occludin translation by increasing occludin mRNA recruitment to P-bodies, whereas HuR promotes occludin translation by blocking occludin mRNA translocation to P-bodies via the displacement of CUGBP1.


2019 ◽  
Vol 24 (2) ◽  
pp. 90-98
Author(s):  
Eun-Ji Shin ◽  
Eui Jeong Han ◽  
Min Ju Kim ◽  
Jaekyu Jung ◽  
Junyoung Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document