scholarly journals GC-MS Analysis and Biomedical Therapy of Oil from n-Hexane Fraction of Scutellaria edelbergii Rech. f.: In Vitro, In Vivo, and In Silico Approach

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7676
Author(s):  
Muddaser Shah ◽  
Waheed Murad ◽  
Najeeb Ur Rehman ◽  
Sidra Mubin ◽  
Jamal Nasser Al-Sabahi ◽  
...  

The current study aimed to explore the crude oils obtained from the n-hexane fraction of Scutellaria edelbergii and further analyzed, for the first time, for their chemical composition, in vitro antibacterial, antifungal, antioxidant, antidiabetic, and in vivo anti-inflammatory, and analgesic activities. For the phytochemical composition, the oils proceeded to gas chromatography-mass spectrometry (GC-MS) analysis and from the resultant chromatogram, 42 bioactive constituents were identified. Among them, the major components were linoleic acid ethyl ester (19.67%) followed by ethyl oleate (18.45%), linolenic acid methyl ester (11.67%), and palmitic acid ethyl ester (11.01%). Tetrazolium 96-well plate MTT assay and agar-well diffusion methods were used to evaluate the isolated oil for its minimum inhibitory concentrations (MIC), minimum bactericidal concentration (MBC), half-maximal inhibitory concentrations (IC50), and zone of inhibitions that could determine the potential antimicrobial efficacy’s. Substantial antibacterial activities were observed against the clinical isolates comprising of three Gram-negative bacteria, viz., Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa, and one Gram-positive bacterial strain, Enterococcus faecalis. The oils were also effective against Candida albicans and Fusarium oxysporum when evaluated for their antifungal potential. Moreover, significant antioxidant potential with IC50 values of 136.4 and 161.5 µg/mL for extracted oil was evaluated through DPPH (1,1-Diphenyl-2-picryl-hydrazyl) and ABTS assays compared with standard ascorbic acid where the IC50 values were 44.49 and 67.78 µg/mL, respectively, against the tested free radicals. The oils was also potent, inhibiting the α-glucosidase (IC50 5.45 ± 0.42 µg/mL) enzyme compared to the standard. Anti-glucosidase potential was visualized through molecular docking simulations where ten compounds of the oil were found to be the leading inhibitors of the selected enzyme based on interactions, binding energy, and binding affinity. The oil was found to be an effective anti-inflammatory (61%) agent compared with diclofenac sodium (70.92%) via the carrageenan-induced assay. An appreciable (48.28%) analgesic activity in correlation with the standard aspirin was observed through the acetic acid-induced writhing bioassay. The oil from the n-hexane fraction of S. edelbergii contained valuable bioactive constituents that can act as in vitro biological and in vivo pharmacological agents. However, further studies are needed to uncover individual responsible compounds of the observed biological potentials which would be helpful in devising novel drugs.

Molecules ◽  
2020 ◽  
Vol 25 (15) ◽  
pp. 3382 ◽  
Author(s):  
Chi-Lung Yang ◽  
Ho-Cheng Wu ◽  
Tsong-Long Hwang ◽  
Chu-Hung Lin ◽  
Yin-Hua Cheng ◽  
...  

One new dibenzocycloheptene, validinol (1), and one butanolide firstly isolated from the natural source, validinolide (2), together with 17 known compounds were isolated from the stem of Cinnamomum validinerve. Among the isolates, lincomolide A (3), secosubamolide (7), and cinnamtannin B1 (19) exhibited potent inhibition on both superoxide anion generation (IC50 values of 2.98 ± 0.3 µM, 4.37 ± 0.38 µM, and 2.20 ± 0.3 µM, respectively) and elastase release (IC50 values of 3.96 ± 0.31 µM, 3.04 ± 0.23 µM, and 4.64 ± 0.71 µM, respectively) by human neutrophils. In addition, isophilippinolide A (6), secosubamolide (7), and cinnamtannin B1 (19) showed bacteriostatic effects against Propionibacterium acnes in in vitro study, with minimal inhibitory concentration (MIC) values at 16 μg/mL, 16 μg/mL, and 500 μg/mL, respectively. Further investigations using the in vivo ear P. acnes infection model showed that the intraperitoneal administration of the major component cinnamtannin B1 (19) reduced immune cell infiltration and pro-inflammatory cytokines TNF-α and IL-6 at the infection sites. The results demonstrated the potential of cinnamtannin B1 (19) for acne therapy. In summary, these results demonstrated the anti-inflammatory potentials of Formosan C. validinerve during bacterial infections.


Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1698
Author(s):  
Leticia Olivera-Castillo ◽  
George Grant ◽  
Nuvia Kantún-Moreno ◽  
Hirian A. Barrera-Pérez ◽  
Jorge Montero ◽  
...  

Sea cucumber body wall contains several naturally occurring bioactive components that possess health-promoting properties. Isostichopus badionotus from Yucatan, Mexico is heavily fished, but little is known about its bioactive constituents. We previously established that I. badionotus meal had potent anti-inflammatory properties in vivo. We have now screened some of its constituents for anti-inflammatory activity in vitro. Glycosaminoglycan and soluble protein preparations reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory responses in HaCaT cells while an ethanol extract had a limited effect. The primary glycosaminoglycan (fucosylated chondroitin sulfate; FCS) was purified and tested for anti-inflammatory activity in vivo. FCS modulated the expression of critical genes, including NF-ĸB, TNFα, iNOS, and COX-2, and attenuated inflammation and tissue damage caused by TPA in a mouse ear inflammation model. It also mitigated colonic colitis caused in mice by dextran sodium sulfate. FCS from I. badionotus of the Yucatan Peninsula thus had strong anti-inflammatory properties in vivo.


2020 ◽  
Vol 20 (11) ◽  
pp. 988-1000 ◽  
Author(s):  
Bellamkonda Bosebabu ◽  
Sri Pragnya Cheruku ◽  
Mallikarjuna Rao Chamallamudi ◽  
Madhavan Nampoothiri ◽  
Rekha R. Shenoy ◽  
...  

Sesame (Sesamum indicum L.) seeds have been authenticated for its medicinal value in both Chinese and Indian systems of medicine. Its numerous potential nutritional benefits are attributed to its main bioactive constituents, sesamol. As a result of those studies, several molecular mechanisms are emerging describing the pleiotropic biological effects of sesamol. This review summarized the most interesting in vitro and in vivo studies on the biological effects of sesamol. The present work summarises data available from Pubmed and Scopus database. Several molecular mechanisms have been elucidated describing the pleiotropic biological effects of sesamol. Its major therapeutic effects have been elicited in managing oxidative and inflammatory conditions, metabolic syndrome and mood disorders. Further, compelling evidence reflected the ability of sesamol in inhibiting proliferation of the inflammatory cell, prevention of invasion and angiogenesis via affecting multiple molecular targets and downstream mechanisms. Sesamol is a safe, non‐toxic chemical that mediates anti‐inflammatory effects by down‐regulating the transcription of inflammatory markers such as cytokines, redox status, protein kinases, and enzymes that promote inflammation. In addition, sesamol also induces apoptosis in cancer cells via mitochondrial and receptor‐mediated pathways, as well as activation of caspase cascades. In the present review, several pharmacological effects of sesamol are summarised namely, antioxidant, anti-cancer, neuroprotective, cardioprotective, anti-inflammatory, hypolipidemic, radioprotective, anti-aging, anti-ulcer, anti-dementia, anti-depressant, antiplatelet, anticonvulsant, anti-anxiolytic, wound healing, cosmetic (skin whitening), anti-microbial, matrix metalloproteinase (MMPs) inhibition, hepatoprotective activity and other biological effects. Here we have summarized the proposed mechanism behind these pharmacological effects.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4277
Author(s):  
Lu-Te Chuang ◽  
Ya-Hsin Shih ◽  
Wen-Cheng Huang ◽  
Lie-Chwen Lin ◽  
Chin Hsu ◽  
...  

Cutibacterium acnes (formerly Propionibacterium acnes) is a key pathogen involved in the development and progression of acne inflammation. The numerous bioactive properties of wild bitter melon (WBM) leaf extract and their medicinal applications have been recognized for many years. In this study, we examined the suppressive effect of a methanolic extract (ME) of WBM leaf and fractionated components thereof on live C. acnes-induced in vitro and in vivo inflammation. Following methanol extraction of WBM leaves, we confirmed anti-inflammatory properties of ME in C. acnes-treated human THP-1 monocyte and mouse ear edema models. Using a bioassay-monitored isolation approach and a combination of liquid–liquid extraction and column chromatography, the ME was then separated into n-hexane, ethyl acetate, n-butanol and water-soluble fractions. The hexane fraction exerted the most potent anti-inflammatory effect, suppressing C. acnes-induced interleukin-8 (IL-8) production by 36%. The ethanol-soluble fraction (ESF), which was separated from the n-hexane fraction, significantly inhibited C. acnes-induced activation of mitogen-activated protein kinase (MAPK)-mediated cellular IL-8 production. Similarly, the ESF protected against C. acnes-stimulated mouse ear swelling, as measured by ear thickness (20%) and biopsy weight (23%). Twenty-four compounds in the ESF were identified using gas chromatograph–mass spectrum (GC/MS) analysis. Using co-cultures of C. acnes and THP-1 cells, β-ionone, a compound of the ESF, reduced the production of IL-1β and IL-8 up to 40% and 18%, respectively. β-ionone also reduced epidermal microabscess, neutrophilic infiltration and IL-1β expression in mouse ear. We also found evidence of the presence of anti-inflammatory substances in an unfractionated phenolic extract of WBM leaf, and demonstrated that the ESF is a potential anti-inflammatory agent for modulating in vitro and in vivo C. acnes-induced inflammatory responses.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5219
Author(s):  
Carlota Salgado ◽  
Hugo Morin ◽  
Nayara Coriolano de Aquino ◽  
Laurence Neff ◽  
Cláudia Quintino da Rocha ◽  
...  

Arrabidaea brachypoda is a plant commonly used for the treatment of kidney stones, arthritis and pain in traditional Brazilian medicine. Different in vitro and in vivo activities, ranging from antinociceptive to anti-Trypanosoma cruzi, have been reported for the dichloromethane root extract of Arrabidaea brachypoda (DCMAB) and isolated compounds. This work aimed to assess the in vitro anti-inflammatory activity in arthritic synoviocytes of the DCMAB, the hydroethanolic extract (HEAB) and three dimeric flavonoids isolated from the DCMAB. These compounds, brachydin A (1), B (2) and C (3), were isolated both by medium pressure liquid and high-speed counter current chromatography. Their quantification was performed by mass spectrometry on both DCMAB and HEAB. IL-1β activated human fibroblast-like synoviocytes were incubated with both extracts and isolated compounds to determine the levels of pro-inflammatory cytokine IL-6 by enzyme-linked immunosorbent assay (ELISA). DCMAB inhibited 30% of IL-6 release at 25 µg/mL, when compared with controls while HEAB was inactive. IC50 values determined for 2 and 3 were 3-fold higher than 1. The DCMAB activity seems to be linked to higher proportions of compounds 2 and 3 in this extract. These observations could thus explain the traditional use of A. brachypoda roots in the treatment of osteoarthritis.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1367 ◽  
Author(s):  
Md. Adnan ◽  
Md. Nazim Uddin Chy ◽  
A.T.M. Mostafa Kamal ◽  
Md Azad ◽  
Arkajyoti Paul ◽  
...  

Ophiorrhiza rugosa var. prostrata is one of the most frequently used ethnomedicinal plants by the indigenous communities of Bangladesh. This study was designed to investigate the antidiarrheal, anti-inflammatory, anthelmintic and antibacterial activities of the ethanol extract of O. rugosa leaves (EEOR). The leaves were extracted with ethanol and subjected to in vivo antidiarrheal screening using the castor oil-induced diarrhea, enteropooling, and gastrointestinal transit models. Anti-inflammatory efficacy was evaluated using the histamine-induced paw edema test. In parallel, in vitro anthelmintic and antibacterial activities were evaluated using the aquatic worm and disc diffusion assays respectively. In all three diarrheal models, EEOR (100, 200 and 400 mg/kg) showed obvious inhibition of diarrheal stool frequency, reduction of the volume and weight of the intestinal contents, and significant inhibition of intestinal motility. Also, EEOR manifested dose-dependent anti-inflammatory activity. Anthelmintic action was deemed significant (P < 0.001) with respect to the onset of paralysis and helminth death. EEOR also resulted in strong zones of inhibition when tested against both Gram-positive and Gram-negative bacteria. GC-MS analysis identified 30 compounds within EEOR, and of these, 13 compounds documented as bioactive showed good binding affinities to M3 muscarinic acetylcholine, 5-HT3, tubulin and GlcN-6-P synthase protein targets in molecular docking experiments. Additionally, ADME/T and PASS analyses revealed their drug-likeness, likely safety upon consumption and possible pharmacological activities. In conclusion, our findings scientifically support the ethnomedicinal use and value of this plant, which may provide a potential source for future development of medicines.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1106
Author(s):  
Rasha Saad Suliman ◽  
Sahar Saleh Alghamdi ◽  
Rizwan Ali ◽  
Dimah A. Aljatli ◽  
Sarah Huwaizi ◽  
...  

Background: Aloe perryi is a traditional herb that has various biological and pharmacological properties such as anti-inflammatory, laxative, antiviral, antidiabetic, and antitumor effects, which have not been deliberated before. The current investigation aims to evaluate in vitro cytotoxicity against several cancer cell lines in addition to in vivo anti-inflammatory activities of Aloe perryi extract using a rat animal model. Moreover, the pharmacokinetic properties of bioactive constituents and possible biological targets were assessed and evaluated. The methanolic extract of Aloe perryi was prepared by maceration, to tentatively identify the biomolecules of the Aloe perryi extract, analytical LC–QTOF-MS method was employed for Aloe perryi methanolic extract. The cytotoxic activity was examined in six cancer cell lines using Titer-Glo assay and the IC50s were calculated in addition to in silico target predictions and in vivo anti-inflammatory activity assessment. Subsequently, the pharmacokinetics of the identified active components of Aloe perryi were predicted using SwissADME, and target prediction using the Molinspiration webserver. The cytotoxic activity on HL60 and MDA-MB-231 was moderately affected by the Aloe perryi extract with IC50 of 63.81, and 89.85 μg/ml, respectively, with no activity on other cells lines. Moreover, the Aloe perryi extract exhibited a significant increase in wound contraction, hair growth, and complete re-epithelization when compared with the negative control. The pharmacokinetic properties of the bioactive constituents suggested a good pharmaceutical profile for the active compounds and nuclear receptors and enzymes were the two main possible targets for these active compounds. Our results demonstrated the promising activity of Aloe perryi extract with cytotoxic and anti-inflammatory properties, indicating a potential therapeutic utility of this plant in various disease conditions.


2019 ◽  
Vol 3 (3) ◽  
pp. 150 ◽  
Author(s):  
Mujeeb Hoosen

African plants have been used for medicinal purposes for many centuries. Many of these African medicinal plants are assumed to be safe but have yet to be scientifically validated. Aspalathus linearis (rooibos) is a commercialised South African tea recognised for its phytopharmaceutical potential. Aspalathus linearis (rooibos) has been gaining popularity globally for its health benefits and accepted as a nutraceutical due to the growing evidence of its efficacy. The bioactive constituents found in Aspalathus linearis (rooibos) have been reported to exert both anti-inflammatory and antioxidant activity however a few in vitro studies has suggested otherwise. Aspalathus linearis (rooibos) has shown to modify the actions of the immune system by influencing the regulation of messenger molecules like cytokines and nitric oxide however most of these studies have been conducted in vitro with a very few studies reaching in vivo application. Divergent in vitro cell models has shown to produce varying results regarding cytokine and nitric oxide NO activity of Aspalathus linearis (rooibos). This review highlights recent studies on the (NO) and cytokine activities of Aspalathus linearis (rooibos) both in vitro and in vivo. Most studies report on its anti-inflammatory and antioxidant activity however a few in vitro studies suggests opposite effects which should be considered for prolonged use especially when prescribed in a supplementation form. Many studies have looked at aspects of safety and toxicity of Aspalathus linearis (rooibos) however no complete toxicological studies have been done as yet.International Journal of Human and Health Sciences Vol. 03 No. 03 July’19. Page: 150-157


Sign in / Sign up

Export Citation Format

Share Document