scholarly journals Recent Advances in Polyurethane/POSS Hybrids for Biomedical Applications

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 40
Author(s):  
Jan Ozimek ◽  
Krzysztof Pielichowski

Advanced organic-inorganic materials-composites, nanocomposites, and hybrids with various compositions offer unique properties required for biomedical applications. One of the most promising inorganic (nano)additives are polyhedral oligomeric silsesquioxanes (POSS); their biocompatibility, non-toxicity, and phase separation ability that modifies the material porosity are fundamental properties required in modern biomedical applications. When incorporated, chemically or physically, into polyurethane matrices, they substantially change polymer properties, including mechanical properties, surface characteristics, and bioactivity. Hence, this review is dedicated to POSS-PU composites that have recently been developed for applications in the biomedical field. First, different modes of POSS incorporation into PU structure have been presented, then recent developments of PU/POSS hybrids as bio-active composites for scaffolds, cardiovascular stents, valves, and membranes, as well as in bio-imaging and cancer treatment, have been described. Finally, characterization and methods of modification routes of polyurethane-based materials with silsesquioxanes were presented.

2021 ◽  
Vol 12 (14) ◽  
pp. 5044-5063 ◽  
Author(s):  
Goeun Choi ◽  
N. Sanoj Rejinold ◽  
Huiyan Piao ◽  
Jin-Ho Choy

The present review will be detailing about trending inorganic–inorganic nanohybrids that have been used for various biomedical applications including drug-delivery, bio-imaging and photo therapy.


Author(s):  
Philippe Pradère ◽  
Edwin L. Thomas

High Resolution Electron Microscopy (HREM) is a very powerful technique for the study of crystal defects at the molecular level. Unfortunately polymer crystals are beam sensitive and are destroyed almost instantly under the typical HREM imaging conditions used for inorganic materials. Recent developments of low dose imaging at low magnification have nevertheless permitted the attainment of lattice images of very radiation sensitive polymers such as poly-4-methylpentene-1 and enabled molecular level studies of crystal defects in somewhat more resistant ones such as polyparaxylylene (PPX) [2].With low dose conditions the images obtained are very noisy. Noise arises from the support film, photographic emulsion granularity and in particular, the statistical distribution of electrons at the typical doses of only few electrons per unit resolution area. Figure 1 shows the shapes of electron distribution, according to the Poisson formula :


2003 ◽  
Vol 773 ◽  
Author(s):  
C. Tamerler ◽  
S. Dinçer ◽  
D. Heidel ◽  
N. Karagûler ◽  
M. Sarikaya

AbstractProteins, one of the building blocks in organisms, not only control the assembly in biological systems but also provide most of their complex functions. It may be possible to assemble materials for practical technological applications utilizing the unique advantages provided by proteins. Here we discuss molecular biomimetic pathways in the quest for imitating biology at the molecular scale via protein engineering. We use combinatorial biology protocols to select short polypeptides that have affinity to inorganic materials and use them in assembling novel hybrid materials. We give an overview of some of the recent developments of molecular engineering towards this goal. Inorganic surface specific proteins were identified by using cell surface and phage display technologies. Examples of metal and metal oxide specific polypeptides were represented with an emphasis on certain level of specificities. The recognition and self assembling characteristics of these inorganic-binding proteins would be employed in develeopment of hybrid multifunctional materials for novel bio- and nano-technological applications.


Nanoscale ◽  
2021 ◽  
Author(s):  
Srijan Acharya ◽  
Satyam Suwas ◽  
Kaushik Chatterjee

Metallic materials are widely used to prepare implants for both short-term and long-term use in the human body. The performance of these implants is greatly influenced by their surface characteristics,...


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2253-2291
Author(s):  
Amin Shiralizadeh Dezfuli ◽  
Elmira Kohan ◽  
Sepand Tehrani Fateh ◽  
Neda Alimirzaei ◽  
Hamidreza Arzaghi ◽  
...  

Organic dots is a term used to represent materials including graphene quantum dots and carbon quantum dots because they rely on the presence of other atoms (O, H, and N) for their photoluminescence or fluorescence properties. Cargo delivery, bio-imaging, photodynamic therapy and photothermal therapy are major biomedical applications of organic dots.


Author(s):  
Ranhua Xiong ◽  
Ronald X. Xu ◽  
Chaobo Huang ◽  
Stefaan De Smedt ◽  
Kevin Braeckmans

This review presents an overview of the recent advances in the development of stimuli-responsive nanobubbles and their novel biomedical applications including bio-imaging, drug delivery and ablation of tumor tissues.


Author(s):  
Francesca Persano ◽  
Svetlana Batasheva ◽  
Gölnur Fakhrullina ◽  
Giuseppe Gigli ◽  
Stefano Leporatti ◽  
...  

Inorganic materials, in particular nanoclays and silica nanoparticles, have attracted enormous attention due to their versatile and tuneable properties, making them ideal candidates for a wide range of biomedical applications, such as drug delivery.


2021 ◽  
Vol 9 ◽  
Author(s):  
Lizhen Zhang ◽  
Chengyuan Zhu ◽  
Rongtao Huang ◽  
Yanwen Ding ◽  
Changping Ruan ◽  
...  

Recently, inorganic nanomaterials have received considerable attention for use in biomedical applications owing to their unique physicochemical properties based on their shapes, sizes, and surface characteristics. Photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemical dynamic therapy (CDT), which are cancer therapeutics mediated by reactive oxygen species (ROS), have the potential to significantly enhance the therapeutic precision and efficacy for cancer. To facilitate cancer therapeutics, numerous inorganic nanomaterials have been developed to generate ROS. This mini review provides an overview of the generation mechanisms of ROS by representative inorganic nanomaterials for cancer therapeutics, including the structures of engineered inorganic nanomaterials, ROS production conditions, ROS types, and the applications of the inorganic nanomaterials in cancer PDT, SDT, and CDT.


2018 ◽  
Vol 38 (2) ◽  
pp. 49-76 ◽  
Author(s):  
Amna Kamal ◽  
Muhammad Adnan Iqbal ◽  
Haq Nawaz Bhatti

AbstractSelenium is a biocompatible element and participates in several biochemical reactions occurring in the human body. Its biocompatibility and minimal toxicity has attracted researchers to develop selenium-based drugs. Hence, recent developments on biomedical applications of selenium-based compounds have been discussed. A structure activity relationship has also been interpreted.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 2118 ◽  
Author(s):  
Anna J. Simon ◽  
Andrew D. Ellington

Synthetically engineered organisms hold promise for a broad range of medical, environmental, and industrial applications. Organisms can potentially be designed, for example, for the inexpensive and environmentally benign synthesis of pharmaceuticals and industrial chemicals, for the cleanup of environmental pollutants, and potentially even for biomedical applications such as the targeting of specific diseases or tissues. However, the use of synthetically engineered organisms comes with several reasonable safety concerns, one of which is that the organisms or their genes could escape their intended habitats and cause environmental disruption. Here we review key recent developments in this emerging field of synthetic biocontainment and discuss further developments that might be necessary for the widespread use of synthetic organisms. Specifically, we discuss the history and modern development of three strategies for the containment of synthetic microbes: addiction to an exogenously supplied ligand; self-killing outside of a designated environment; and self-destroying encoded DNA circuitry outside of a designated environment.


Sign in / Sign up

Export Citation Format

Share Document