scholarly journals Effect of Spontaneous and Water-Based Passivation on Components and Parameters of Ti6Al4V (ELI Grade) Surface Tension and Its Wettability by an Aqueous Solution of Sucrose Ester Surfactants

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 179
Author(s):  
Joanna Krawczyk ◽  
Amparo María Gallardo-Moreno ◽  
María Luisa González-Martín

Solid wettability is especially important for biomaterials and implants in the context of microbial adhesion to their surfaces. This adhesion can be inhibited by changes in biomaterial surface roughness and/or its hydrophilic–hydrophobic balance. The surface hydrophilic–hydrophobic balance can be changed by the specifics of the surface treatment (proper conditions of surface preparation) or adsorption of different substances. From the practical point of view, in systems that include biomaterials and implants, the adsorption of compounds characterized by bacteriostatic or bactericidal properties is especially desirable. Substances that are able to change the surface properties of a given solid as a result of their adsorption and possess at least bacteriostatic properties include sucrose ester surfactants. Thus, in our studies the analysis of a specific surface treatment effect (proper passivation conditions) on a biomaterial alloy’s (Ti6Al4V ELI, Grade 23) properties was performed based on measurements of the contact angles of water, formamide and diiodomethane. In addition, the changes in the studied solid surface’s properties resulting from the sucrose monodecanoate (SMD) and sucrose monolaurate (SML) molecules’ adsorption at the solid–water interface were also analyzed. For the analysis, the values of the contact angles of aqueous solutions of SMD and SML were measured at 293 K, and the surface tensions of the aqueous solutions of studied surfactants measured earlier were tested. From the above-mentioned tests, it was found that water environment significantly influences the components and parameters of Ti6Al4V ELI’s surface tension. It also occurred that the addition of both SMD and SML to water (separately) caused a drop in the water contact angle on Ti6Al4V ELI’s surface. However, the sucrose monolaurate surfactant is characterized by a slightly better tendency towards adsorption at the solid–water interface in the studied system compared to sucrose monodecanoate. Additionally, based on the components and parameters of Ti6Al4V ELI’s surface tension calculated from the proper values of components and parameters of model liquids, it was possible to predict the wettability of Ti6Al4V ELI using the aqueous solutions of SMD and SML at various concentrations in the solution.

2013 ◽  
Vol 26 ◽  
pp. 1-8 ◽  
Author(s):  
A. Amraei ◽  
Zahra Fakhroueian ◽  
Alireza Bahramian

Fine SiO2 nanosphericals (2-5nm) and new various stable nanofluids including Tween 80, Span 80, Lauric alcohol-3EO, CTAB, SDS and K-Laurate surfactants in water or paraffin based solution were used as new SiO2 nanoproducts in oil recovery. These nanofluids can strongly change oil-wet carbonate reservoir rock to complete water-wet wettability and showed an excellent trend of surface tension (S.T) and IFT (interfacial tension) reduction in comparison with pure water and reference solutions. The CaCO3 plates reservoir was then aged for 2, 5 and 8 days into the 1, 3 and 8% of different concentrations of synthesized SiO2 nanofluids (effect of various concentrations via different aging time). Air/water and n-decane/water contact angles on oil-wet and clean carbonate rock aged in designed SiO2 nanofluids were measured and the pH value as a significant factor estimated. The interesting influence of microwave irradiation on surface tension and IFT including various SiO2 nanofluids was investigated after 12 min which some of the especial nanofluid concentrations showed successful reduction. Our findings indicated the important effect of temperature over decreasing of surface tension and IFT between oil and water interface including SiO2 nanofluids after annealing at 70°C. Therefore, this phenomenon can be significantly capable and valuable in applying of new technology in the fabrication of novel nanofluids in EOR processes and saving source of energy regarding to conventional production.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2240
Author(s):  
Nataliia Fedorova ◽  
Bettina Ottinger ◽  
Vojislav Jovicic ◽  
Ana Zbogar-Rasic ◽  
Antonio Delgado ◽  
...  

Wettability, roughness and surface treatment methods are essential for the majority of practical applications, where liquid–solid surface interactions take place. The present study experimentally investigated the influence of different mechanical surface treatment methods on the static wettability of uncoated and amphiphobic-coated aluminium alloy (AlMg3) samples, specially focusing on the interaction between surface finishing and coating. Five different surfaces were prepared: as-received substrate, polished, sandpapered, fleece-abraded and sandblasted. After characterisation, the samples were spray-coated using an amphiphobic coating. The characterisation of the uncoated and coated samples involved measurements of the roughness parameters and the apparent contact angles of demineralized water and rapeseed oil. The coating was initially characterised regarding its adhesion to the sample and elevated temperature stability. The applied surface treatments resulted in the scattered sample roughness in the range of Sa = 0.3–15.8 µm, water contact angles of θ a p , w = 78°–106° and extremely low oil contact angles. Coating the samples more than doubled the surface roughness to Sa = 13.3–29 µm, whereas the initial surface treatment properties (structure, anisotropy, etc.) were entirely repressed by the coating properties. Coating led the water contact angles to increase to θ a p , w _ c o a t e d = 162°–173° and even more pronounced oil contact angles to increase to θ a p , o _ c o a t e d = 139°–150°, classifying the surfaces as superhydrophobic and oleophobic.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 533a-533 ◽  
Author(s):  
L. Cisneros-Zevallos ◽  
M. E. Saltveit ◽  
J. M Krochta

Nettability is an important factor to be considered in postharvest treatments such as washing, aqueous dippings, coatings, etc. Pome fruits (ten apple and four pear cultivars) and stone fruits (nectarine and plums) were evaluated for wetting behavior and surface tension at room temperature. Nettability was assessed by measuring contact angles of water. Surface tension was calculated by measuring contact angles of methylene iodide and water or by a series of pure surfactants using Zisman's method. Wetting behavior on apple fruits depended on cultivar, with water contact angles ranging from 75° to 131°. For pear fruits, wetting also depended on cultivar. Calculated surface tensions of pear fruits were in general higher than most apple cultivars tested. In stone fruits, plums presented a high water-repellency with a contact angle of 137°. The wetting of fruit surfaces seems to be governed by the nature of the chemical groups exposed on the surface of the cuticle and also by the surface roughness, as evidenced by tire high values of some contact angles.


1979 ◽  
Vol 72 (3) ◽  
pp. 488-494 ◽  
Author(s):  
J.D. Andrade ◽  
S.M. Ma ◽  
R.N. King ◽  
D.E. Gregonis

Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
Maciej Psarski ◽  
Jacek Marczak ◽  
Grzegorz Celichowski ◽  
Grzegorz Sobieraj ◽  
Konrad Gumowski ◽  
...  

AbstractNature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.


2020 ◽  
Vol 4 (3) ◽  
pp. 37
Author(s):  
Aleksandra Szcześ ◽  
Emil Chibowski ◽  
Emilia Rzeźnik

It was reported in many papers that the magnetic field (MF) affects properties of water, and, among others, its surface tension. Thus, it should be reflected in changes of the wetting contact angle of a water droplet deposited on the solid surface. In this study, the water contact angles were measured on the glass and mica surface. The water was first exposed to the static magnetic field (MF) (15 mT or 0.27 T) for 1, 5, and 10 min under dynamic conditions. Then applying the van Oss et al. approach (LWAB), it was found that the MF effect is reflected in the changes of the calculated acid-base components of the solids, especially the electron donor parameter. However, the total surface free energy of the solids remained practically unchanged. Moreover, the apparent surface free energy of the solids calculated from the water contact angle hysteresis (CAH), i.e., the difference between the advancing and receding contact angles, changes in the same way as the electron donor parameter does. Since the solid surfaces were not magnetically treated, the acid-base components, which are mainly results from hydrogen bonding interactions, may be indirect evidence of the water structure changed by the MF action. All of the mentioned changes are greater for the glass than for a more hydrophilic mica surface and depend upon the time of MF exposure and its strength. The magnetic field effect on the changes of the surface-free energy parameters for the mica and glass is opposite what may be due to the difference in the surface hydrophilicity. A “magnetic memory” effect was also found. The effect of MF on the water surface tension depends on the circulation time. It increases with the field duration. Moreover, the changes in the work of water adhesion indicate the possibility of solid surface wettability changes by the external MF water treatment. However, these are preliminary results that need further confirmation by other techniques.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1211
Author(s):  
Mirko Kariž ◽  
Daša Krapež Tomec ◽  
Sebastian Dahle ◽  
Manja Kitek Kuzman ◽  
Milan Šernek ◽  
...  

Additive manufacturing is becoming increasingly important for manufacturing end products, not just prototyping. However, the size of 3D-printed products is limited due to available printer sizes and other technological limitations. For example, making furniture from 3D-printed parts and wooden elements requires adequate adhesive joints. Since materials for 3D printing usually do not bond very well with adhesives designed for woodworking, they require special surface preparation to improve adhesion. In this study, fused deposition modelling (FDM) 3D-printed parts made of polylactic acid (PLA), polylactic acid with wood flour additive (Wood-PLA), and acrylonitrile-butadiene-styrene (ABS) polymers were bonded to wood with polyvinyl acetate (PVAc) adhesive. The surfaces of the samples were bonded as either non-treated, sanded, plasma treated, or sanded and plasma treated to evaluate the effect of each surface preparation on the bondability of the 3D-printed surfaces. Different surface preparations affected the bond shear strength in different ways. The plasma treatment significantly reduced water contact angles on all tested printing materials and increased the bond tensile shear strength of the adhesive used. The increase in bond strength was highest for the surfaces that had been both sanded and plasma treated. The highest increase was found for the ABS material (untreated 0.05 MPa; sanded and plasma treated 4.83 MPa) followed by Wood-PLA (from 0.45 MPa to 3.96 MPa) and PLA (from 0.55 MPa to 3.72 MPa). Analysis with a scanning electron microscope showed the smooth surfaces of the 3D-printed parts, which became rougher with sanding with more protruded particles, but plasma treatment partially melted the surface structures on the thermoplastic polymer surfaces.


2021 ◽  
Vol 30 ◽  
pp. 2633366X2097865
Author(s):  
Li Jian

The surface treatment of carbon fibers (CFs) was carried out using a self-synthesized sizing agent. The effects of sizing agent on the surface of CFs and the interface properties of CF/polymethyl methacrylate (PMMA) composites were mainly studied. Scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and static contact angle were used to compare and study the CFs before and after the surface treatment, including surface morphology, surface chemical element composition, and wettability of the surface. The influence of sizing agent on the mechanical properties of CF/PMMA resin composite interface was investigated. The results show that after sizing treatment, the CF surface O/C value increased by 35.1% and the contact angles of CF and resin decreased by 16.2%. The interfacial shear strength and interlayer shear strength increased by 12.6%.


Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1263
Author(s):  
Liyun Xu ◽  
Yu Zhang ◽  
Ying Guo ◽  
Ruiyun Zhang ◽  
Jianjun Shi ◽  
...  

In order to obtain stable superhydrophobicity, suitable hydrophobic treatment agents should be selected according to different material properties. In this paper, cotton and poly(ethylene terephthalate) (PET) fabrics were respectively coated with dodecyl methacrylate (LMA) via argon combined capacitively coupled plasma (CCP), and the surface hydrophobicity and durability of the treated cotton and polyester fabrics are also discussed. An interesting phenomenon happened, whereby the LMA-coated cotton fabric (Cotton-g-LMA) had better water repelling and mechanical durability properties than LMA-coated PET fabric (PET-g-LMA), and LMA-coated hydroxyl-grafted PET fabrics (PET fabrics were successively coated with polyethylene glycol (PEG) and LMA, PET-g-PEG & LMA) had a similar performance to cotton fabrics. The water contact angles of Cotton-g-LMA, PET-g-LMA and PET-g-PEG & LMA were 156°, 153° and 155°, respectively, and after 45 washing cycles or 1000 rubbing cycles, the corresponding water contact angles decreased to 145°, 88°, 134° and 146°, 127° and 143°, respectively. Additionally, thermoplastic polyurethane (TPU) and polyamides-6 (PA6) fabrics all exhibited the same properties as the PET fabric. Therefore, the grafting of hydroxyl can improve the hydrophobic effect of LMA coating and the binding property between LMA and fabrics effectively, without changing the wearing comfort.


Sign in / Sign up

Export Citation Format

Share Document