scholarly journals Tunable Bound States in the Continuum in All-Dielectric Terahertz Metasurfaces

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 623 ◽  
Author(s):  
Xu Chen ◽  
Wenhui Fan

In this paper, a tunable terahertz dielectric metasurfaces consisting of split gap bars in the unit cell is proposed and theoretically demonstrated, where the sharp high-quality Fano resonance can be achieved through excitation of quasi-bound states in the continuum (quasi-BIC) by breaking in-plane symmetry of the unit cell structure. With the structural asymmetry parameter decreasing and vanishing, the calculated eigenmodes spectra demonstrate the resonance changes from Fano to symmetry-protected BIC mode, and the radiative quality factors obey the inverse square law. Moreover, combining with graphene monolayer and strontium titanate materials, the quasi-BIC Fano resonance can be tuned independently, where the resonance amplitude can be tuned by adjusting the Fermi level of graphene and the resonance frequency can be tuned by controlling the temperature of strontium titanate materials. The proposed structure has numerous potential applications on tunable devices including modulators, switches, and sensors.

2021 ◽  
Author(s):  
Zihao Chen ◽  
Xuefan Yin ◽  
Jicheng Jin ◽  
Zhao Zheng ◽  
Zixuan Zhang ◽  
...  

Abstract Light trapping is a constant pursuit in photonics because of its importance in science and technology. Many mechanisms have been explored, including the use of mirrors made of materials or structures that forbid outgoing waves, and bound states in the continuum that are mirror-less but based on topology. Here we report a compound method, combing mirrors and bound states in the continuum in an optimized way, to achieve a class of on-chip optical cavities that have high quality factors and small modal volumes. Specifically, light is trapped in the transverse direction by the photonic band gap of the lateral hetero-structure and confined in the vertical direction by the constellation of multiple bound states in the continuum. As a result, unlike most bound states in the continuum found in photonic crystal slabs that are de-localized Bloch modes, we achieve light-trapping in all three dimensions and experimentally demonstrate quality factors as high as Q = 1.09×106 and modal volumes as low as V = 3.56 μm3 in the telecommunication regime. We further prove the robustness of our method through the statistical study of multiple fabricated devices. Our work provides a new method of light trapping, which can find potential applications in photonic integration, nonlinear optics and quantum computing.


2021 ◽  
Author(s):  
Tian Sang ◽  
Qing Mi ◽  
Yao Pei ◽  
Chaoyu Yang ◽  
Shi Li ◽  
...  

Abstract In photonics, it is essential to achieve high quality (Q)-factor resonances to enhance light-mater interactions for improving performances of optical devices. Herein, we demonstrate that high Q-factor dual-band Fano resonances can be achieved by using a planar nanohole slab (PNS) based on the excitation of bound states in the continuum (BICs). By shrinking or expanding the tetramerized holes of the superlattice of the PNS, symmetry-protected BICs can be excited and the locations of Fano resonances as well as their Q-factors can be flexibly tuned. Physical mechanisms for the dual-band Fano resonances can be interpreted as the resonant couplings between the electric-toroidal dipoles or the magnetic-toroidal dipoles based on the far-field multiple decompositions and the near-field distributions of the superlattice. The dual-band Fano resonances of the PNS possess polarization independent feature, they can be survived even the geometric parameters of the PNS are significantly altered, making them more suitable for potential applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Chi Zhang ◽  
Qiang Liu ◽  
Xiao Peng ◽  
Zhengbiao Ouyang ◽  
Suling Shen

Abstract Simultaneous realization of high quality factor (Q), sensitivity, and figure of merit (FOM) play a pivotal role in building the THz sensor. For such purpose, we propose an all-polymeric Bloch surface wave (BSW) structure that supports a bright BSW mode and a dark surface Fano state that is embedded in the continuum, both of which coupled to the same radiation channels. The existence of the sharp dip with a maximum depth of Fano line could be interpreted with the physics of Friedrich–Wintgen bound states in the continuum (FW-BICs), because of the destructive interference between bright BSW and dark surface Fano modes. A strong angular- and frequency-dependent Q was found. Related influential factors to Q value may also include an asymmetric arrangement of top and grating layers, together with the weak coupling provided by photonic crystals. One numerically optimized design shows a quality factor Q of the Fano mode as 23,670, which is almost two orders higher than that in conventional metallic-metamaterial-based designs. The optimized sensitivity can numerically reach 4.34 THz/RIU in the frequency domain, which is one order higher than that reported in all-dielectric metasurfaces. We infer the high sensitivity is related to the phase-matching condition provided by near-subwavelength gratings. The associated FOM can reach 8857/RIU. Besides, the proposed design also numerically demonstrates high sensitivity in the angular domain ∼125.5°/RIU. Considering it poses no specific requirement for materials that own high contrast of permittivity in the THz regime, large interfacing area, the mechanical and chemical robustness offered by polymers and low cost in fabrication, such all-polymeric BSW structure that supports novel Fano resonance in THz window may give access to rich applications in hazardous gas detection and label-free bio-sensing.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shereena Joseph ◽  
Saurabh Pandey ◽  
Swagato Sarkar ◽  
Joby Joseph

Abstract From theoretical model to experimental realization, the bound state in the continuum (BIC) is an emerging area of research interest in the last decade. In the initial years, well-established theoretical frameworks explained the underlying physics for optical BIC modes excited in various symmetrical configurations. Eventually, in the last couple of years, optical-BICs were exploited as a promising tool for experimental realization with advanced nanofabrication techniques for numerous breakthrough applications. Here, we present a review of the evolution of BIC modes in various symmetry and functioning mediums along with their application. More specifically, depending upon the nature of the interacting medium, the excitations of BIC modes are classified into the pure dielectric and lossy plasmonic BICs. The dielectric constituents are again classified as photonic crystal functioning in the subwavelength regime, influenced by the diffraction modes and metasurfaces for interactions far from the diffraction regime. More importantly, engineered functional materials evolved with the pure dielectric medium are explored for hybrid-quasi-BIC modes with huge-quality factors, exhibiting a promising approach to trigger the nanoscale phenomena more efficiently. Similarly, hybrid modes instigated by the photonic and plasmonic constituents can replace the high dissipative losses of metallic components, sustaining the high localization of field and high figure of merit. Further, the discussions are based on the applications of the localized BIC modes and high-quality quasi-BIC resonance traits in the nonlinear harmonic generation, refractometric sensing, imaging, lasing, nanocavities, low loss on-chip communication, and as a photodetector. The topology-controlled beam steering and, chiral sensing has also been briefly discussed.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Qing Mi ◽  
Tian Sang ◽  
Yao Pei ◽  
Chaoyu Yang ◽  
Shi Li ◽  
...  

AbstractIn photonics, it is essential to achieve high-quality (Q)-factor resonances to improve optical devices’ performances. Herein, we demonstrate that high-Q-factor dual-band Fano resonances can be achieved by using a planar nanohole slab (PNS) based on the excitation of dual bound states in the continuum (BICs). By shrinking or expanding the tetramerized holes of the superlattice of the PNS, two symmetry-protected BICs can be induced to dual-band Fano resonances and their locations as well as their Q-factors can be flexibly tuned. Physical mechanisms for the dual-band Fano resonances can be interpreted as the resonant couplings between the electric toroidal dipoles or the magnetic toroidal dipoles based on the far-field multiple decompositions and the near-field distributions of the superlattice. The dual-band Fano resonances of the PNS possess polarization-independent feature, and they can be survived even when the geometric parameters of the PNS are significantly altered, making them more suitable for potential applications.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Min-Soo Hwang ◽  
Hoo-Cheol Lee ◽  
Kyoung-Ho Kim ◽  
Kwang-Yong Jeong ◽  
Soon-Hong Kwon ◽  
...  

AbstractWavelength-scale lasers provide promising applications through low power consumption requiring for optical cavities with increased quality factors. Cavity radiative losses can be suppressed strongly in the regime of optical bound states in the continuum; however, a finite size of the resonator limits the performance of bound states in the continuum as cavity modes for active nanophotonic devices. Here, we employ the concept of a supercavity mode created by merging symmetry-protected and accidental bound states in the continuum in the momentum space, and realize an efficient laser based on a finite-size cavity with a small footprint. We trace the evolution of lasing properties before and after the merging point by varying the lattice spacing, and we reveal this laser demonstrates the significantly reduced threshold, substantially increased quality factor, and shrunken far-field images. Our results provide a route for nanolasers with reduced out-of-plane losses in finite-size active nanodevices and improved lasing characteristics.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2343
Author(s):  
Fengyan He ◽  
Jianjun Liu ◽  
Guiming Pan ◽  
Fangzhou Shu ◽  
Xufeng Jing ◽  
...  

Bound states in the continuum (BICs) have attracted much attention due to their infinite Q factor. However, the realization of the analogue of electromagnetically induced transparency (EIT) by near-field coupling with a dark BIC in metasurfaces remains challenging. Here, we propose and numerically demonstrate the realization of a high-quality factor EIT by the coupling of a bright electric dipole resonance and a dark toroidal dipole BIC in an all-dielectric double-layer metasurface. Thanks to the designed unique one-dimensional (D)–two-dimensional (2D) combination of the double-layer metasurface, the sensitivity of the EIT to the relative displacement between the two layer-structures is greatly reduced. Moreover, several designs for widely tunable EIT are proposed and discussed. We believe the proposed double-layer metasurface opens a new avenue for implementing BIC-based EIT with potential applications in filtering, sensing and other photonic devices.


2019 ◽  
Vol 12 (12) ◽  
pp. 125002 ◽  
Author(s):  
Suxia Xie ◽  
Changzhong Xie ◽  
Song Xie ◽  
Jie Zhan ◽  
Zhijian Li ◽  
...  

Nanophotonics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1081-1086 ◽  
Author(s):  
Abdoulaye Ndao ◽  
Liyi Hsu ◽  
Wei Cai ◽  
Jeongho Ha ◽  
Junhee Park ◽  
...  

AbstractOne of the key challenges in biology is to understand how individual cells process information and respond to perturbations. However, most of the existing single-cell analysis methods can only provide a glimpse of cell properties at specific time points and are unable to provide cell secretion and protein analysis at single-cell resolution. To address the limits of existing methods and to accelerate discoveries from single-cell studies, we propose and experimentally demonstrate a new sensor based on bound states in the continuum to quantify exosome secretion from a single cell. Our optical sensors demonstrate high-sensitivity refractive index detection. Because of the strong overlap between the medium supporting the mode and the analytes, such an optical cavity has a figure of merit of 677 and sensitivity of 440 nm/RIU. Such results facilitate technological progress for highly conducive optical sensors for different biomedical applications.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Wenhao Wang ◽  
Lucas V. Besteiro ◽  
Peng Yu ◽  
Feng Lin ◽  
Alexander O. Govorov ◽  
...  

Abstract Hot electrons generated in metallic nanostructures have shown promising perspectives for photodetection. This has prompted efforts to enhance the absorption of photons by metals. However, most strategies require fine-tuning of the geometric parameters to achieve perfect absorption, accompanied by the demanding fabrications. Here, we theoretically propose a Ag grating/TiO2 cladding hybrid structure for hot electron photodetection (HEPD) by combining quasi-bound states in the continuum (BIC) and plasmonic hot electrons. Enabled by quasi-BIC, perfect absorption can be readily achieved and it is robust against the change of several structural parameters due to the topological nature of BIC. Also, we show that the guided mode can be folded into the light cone by introducing a disturbance to become a guided resonance, which then gives rise to a narrow-band HEPD that is difficult to be achieved in the high loss gold plasmonics. Combining the quasi-BIC and the guided resonance, we also realize a multiband HEPD with near-perfect absorption. Our work suggests new routes to enhance the light-harvesting in plasmonic nanosystems.


Sign in / Sign up

Export Citation Format

Share Document