scholarly journals Biomimetic Nanoparticles Potentiate the Anti-Inflammatory Properties of Dexamethasone and Reduce the Cytokine Storm Syndrome: An Additional Weapon against COVID-19?

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2301
Author(s):  
Roberto Molinaro ◽  
Anna Pasto ◽  
Francesca Taraballi ◽  
Federica Giordano ◽  
Jamil A. Azzi ◽  
...  

Recent studies on coronavirus infectious disease 2019 (COVID-19) pathophysiology indicated the cytokine release syndrome induced by the virus as the main cause of mortality. Patients with severe COVID-19 infection present a systemic hyper inflammation that can lead to lung and multi-organ injuries. Among the most recent treatments, corticosteroids have been identified to be effective in mitigating these catastrophic effects. Our group has recently developed leukocyte-derived nanovesicles, termed leukosomes, able to target in vivo the inflamed vasculature associated with pathological conditions including cancer, cardiovascular diseases, and sepsis. Herein, to gain insights on the anti-inflammatory properties of leukosomes, we investigated their ability to reduce uncontrolled inflammation in a lethal model of lipopolysaccharide (LPS)-induced endotoxemia, recapitulating the cytokine storm syndrome observed in COVID-19 infection after encapsulating dexamethasone. Treated animals showed a significant survival advantage and an improved immune response resolution, as demonstrated by a cytokine array analysis of pro- and anti-inflammatory cytokines, chemokines, and other immune-relevant markers. Our results showed that leukosomes enhance the therapeutic activity of dexamethasone and better control the inflammatory response compared to the free drug. Such an approach could be useful for the development of personalized therapies in the treatment of hyperinflammation related to infectious diseases, including the ones caused by COVID-19.

Drug Research ◽  
2021 ◽  
Author(s):  
Ashif Iqubal ◽  
Farazul Hoda ◽  
Abul Kalam Najmi ◽  
Syed Ehtaishamul Haque

AbstractCoronavirus disease (COVID-19) emerged from Wuhan, has now become pandemic and the mortality rate is growing exponentially. Clinical complication and fatality rate is much higher for patients having co-morbid issues. Compromised immune response and hyper inflammation is hall mark of pathogenesis and major cause of mortality. Cytokine release syndrome (CRS) or cytokine storm is a term used to affiliate the situation of hyper inflammation and therefore use of anti-cytokine and anti-inflammatory drugs is used to take care of this situation. Looking into the clinical benefit of these anti-inflammatory drugs, many of them enter into clinical trials. However, understanding the immunopathology of COVID-19 is important otherwise, indiscriminate use of these drugs could be fetal as there exists a very fine line of difference between viral clearing cytokines and inflammatory cytokines. If any drug suppresses the viral clearing cytokines, it will worsen the situation and hence, the use of these drugs must be based on the clinical condition, viral load, co-existing disease condition and severity of the infection.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1067
Author(s):  
Oleksandr Oliynyk ◽  
Wojciech Barg ◽  
Anna Slifirczyk ◽  
Yanina Oliynyk ◽  
Vitaliy Gurianov ◽  
...  

Background: Cytokine storm in COVID-19 is heterogenous. There are at least three subtypes: cytokine release syndrome (CRS), macrophage activation syndrome (MAS), and sepsis. Methods: A retrospective study comprising 276 patients with SARS-CoV-2 pneumonia. All patients were tested for ferritin, interleukin-6, D-Dimer, fibrinogen, calcitonin, and C-reactive protein. According to the diagnostic criteria, three groups of patients with different subtypes of cytokine storm syndrome were identified: MAS, CRS or sepsis. In the MAS and CRS groups, treatment results were assessed depending on whether or not tocilizumab was used. Results: MAS was diagnosed in 9.1% of the patients examined, CRS in 81.8%, and sepsis in 9.1%. Median serum ferritin in patients with MAS was significantly higher (5894 vs. 984 vs. 957 ng/mL, p < 0.001) than in those with CRS or sepsis. Hypofibrinogenemia and pancytopenia were also observed in MAS patients. In CRS patients, a higher mortality rate was observed among those who received tocilizumab, 21 vs. 10 patients (p = 0.043), RR = 2.1 (95% CI 1.0–4.3). In MAS patients, tocilizumab decreased the mortality, 13 vs. 6 patients (p = 0.013), RR = 0.50 (95% CI 0.25–0.99). Сonclusions: Tocilizumab therapy in patients with COVID-19 and CRS was associated with increased mortality, while in MAS patients, it contributed to reduced mortality.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 450
Author(s):  
Kensuke Mitsunari ◽  
Yasuyoshi Miyata ◽  
Tomohiro Matsuo ◽  
Yuta Mukae ◽  
Asato Otsubo ◽  
...  

Benign prostatic hyperplasia (BPH) is arguably the most common benign disease among men. This disease is often associated with lower urinary tract symptoms (LUTS) in men and significantly decreases the quality of life. Polyphenol consumption reportedly plays an important role in the prevention of many diseases, including BPH. In recent years, in addition to disease prevention, many studies have reported the efficacy and safety of polyphenol treatment against various pathological conditions in vivo and in vitro. Furthermore, numerous studies have also revealed the molecular mechanisms of the antioxidant and anti-inflammatory effects of polyphenols. We believe that an improved understanding of the detailed pharmacological roles of polyphenol-induced activities at a molecular level is important for the prevention and treatment of BPH. Polyphenols are composed of many members, and their biological roles differ. In this review, we first provide information regarding the pathological roles of oxidative stress and inflammation in BPH. Next, the antioxidant and anti-inflammatory effects of polyphenols, including those of flavonoids and non-flavonoids, are discussed. Finally, we talk about the results and limitations of previous clinical trials that have used polyphenols in BPH, with particular focus on their molecular mechanisms of action.


2018 ◽  
Vol 10 (11) ◽  
Author(s):  
Anett Pfeiffer ◽  
Frederic B Thalheimer ◽  
Sylvia Hartmann ◽  
Annika M Frank ◽  
Ruben R Bender ◽  
...  

2020 ◽  
Vol 34 (9) ◽  
pp. 12963-12975
Author(s):  
Chunting Ye ◽  
Hongyuan Yang ◽  
Mingshan Cheng ◽  
Leonard D. Shultz ◽  
Dale L. Greiner ◽  
...  

2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Lucie Pearce ◽  
Sean M. Davidson ◽  
Derek M. Yellon

AbstractThe benefits of remote ischaemic conditioning (RIC) have been difficult to translate to humans, when considering traditional outcome measures, such as mortality and heart failure. This paper reviews the recent literature of the anti-inflammatory effects of RIC, with a particular focus on the innate immune response and cytokine inhibition. Given the current COVID-19 pandemic, the inflammatory hypothesis of cardiac protection is an attractive target on which to re-purpose such novel therapies. A PubMed/MEDLINE™ search was performed on July 13th 2020, for the key terms RIC, cytokines, the innate immune system and inflammation. Data suggest that RIC attenuates inflammation in animals by immune conditioning, cytokine inhibition, cell survival and the release of anti-inflammatory exosomes. It is proposed that RIC inhibits cytokine release via a reduction in nuclear factor kappa beta (NF-κB)-mediated NLRP3 inflammasome production. In vivo, RIC attenuates pro-inflammatory cytokine release in myocardial/cerebral infarction and LPS models of endotoxaemia. In the latter group, cytokine inhibition is associated with a profound survival benefit. Further clinical trials should establish whether the benefits of RIC in inflammation can be observed in humans. Moreover, we must consider whether uncomplicated MI and elective surgery are the most suitable clinical conditions in which to test this hypothesis.


2013 ◽  
Vol 191 (9) ◽  
pp. 4589-4598 ◽  
Author(s):  
Sjoukje J. C. van der Stegen ◽  
David M. Davies ◽  
Scott Wilkie ◽  
Julie Foster ◽  
Jane K. Sosabowski ◽  
...  

2021 ◽  
Vol 22 (15) ◽  
pp. 7914
Author(s):  
So Yeong Cheon ◽  
Bon-Nyeo Koo

The outbreak of the coronavirus disease 2019 (COVID-19) began at the end of 2019. COVID-19 is caused by infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and patients with COVID-19 may exhibit poor clinical outcomes. Some patients with severe COVID-19 experience cytokine release syndrome (CRS) or a cytokine storm—elevated levels of hyperactivated immune cells—and circulating pro-inflammatory cytokines, including interleukin (IL)-1β and IL-18. This severe inflammatory response can lead to organ damage/failure and even death. The inflammasome is an intracellular immune complex that is responsible for the secretion of IL-1β and IL-18 in various human diseases. Recently, there has been a growing number of studies revealing a link between the inflammasome and COVID-19. Therefore, this article summarizes the current literature regarding the inflammasome complex and COVID-19.


Sign in / Sign up

Export Citation Format

Share Document