scholarly journals Enhanced Mechanical Properties and Microstructure of Accumulative Roll-Bonded Co/Pb Nanocomposite

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1190
Author(s):  
Maryam Karbasi ◽  
Eskandar Keshavarz Alamdari ◽  
Elahe Amirkhani Dehkordi ◽  
Zulfiqar A. Khan ◽  
Fariborz Tavangarian

Lead composites have been used as anodes in the electrowinning process to produce metals such as copper and zinc. Manufacturing stable lead anodes with appropriate mechanical and chemical properties is required to improve the performance of the electrowinning process. In this study, an accumulative roll bonding (ARB) method was used to fabricate a Co/Pb nanocomposite. Utilizing the ARB method can help us to achieve a uniform structure with enhanced mechanical properties via severe plastic deformation. The results showed that suitable tensile properties were obtained in Pb–0.5%Co–10pass samples. The tensile strength and strain of these samples were 2.51 times higher and 83.7% lower than that of as-cast pure Pb. They also showed creep resistance and hardness up to 1.8 and 2.5 times more than that of as-cast pure Pb. The ARB technique uniformly distributed Co particles in the Pb matrix. The enhanced strength of Pb samples was observed in the composite including grain sizes of less than 50 nm as a result of hindering the recovery phenomenon. The particle size of the Co distributed in the Pb matrix was 353 ± 259 nm. Compared to conventional methods, the ARB process improved the mechanical properties of Co/Pb composites and can open a new horizon to fabricating this composite in metal industries.

2020 ◽  
Vol 1003 ◽  
pp. 31-36
Author(s):  
Marko Vilotic ◽  
Li Hui Lang ◽  
Sergei Alexandrov ◽  
Dragisa Vilotic

Compared to conventional metal forming methods, processing by severe plastic deformation is mostly used to improve the mechanical properties and not for the shaping of a product. Processed material usually has an average crystal grain size of less than a micron and as a result, the material exhibits improvements in most of the mechanical properties, such as yield and ultimate tensile strength, microhardness, sufficiently high workability, good corrosion resistance, and implant biocompatibility and others. In this paper, a brief review of the processing by severe plastic deformation was presented, including the benefits, major methods, and the application. Additionally, a brief review of two methods made by authors was made.


2005 ◽  
Vol 495-497 ◽  
pp. 797-802
Author(s):  
Jan Kuśnierz ◽  
J. Bogucka

The accumulative roll-bonding (ARB) process, invented a few years ago, is a promising mode for introducing severe plastic deformation into industrial practice. The ARB process consists in rolling of the pack of two sheets up to 50 %. Then, the rolled material is sectioned into two halves, stacked and the procedure of roll-bonding is repeated. The orientation distribution of ARB processed Al 98 % up to e ~ 12 is analyzed in the paper. The evolution of crystallographic texture has been discussed in relation with changes of mechanical properties and structure.


2013 ◽  
Vol 745-746 ◽  
pp. 298-302
Author(s):  
Ying Liu ◽  
Ruo Lin Cheng ◽  
Jing Tao Wang ◽  
He Zhang ◽  
Xin Ming Zhang

The effect of severe plastic deformation at ambient temperature on microstructures and mechanical properties of aluminum alloy 2519 was investigated by means of tensile test, micro-hardness test, optical microscopy and scanning electron microscopy. The results showed that tensile strength of as-queched 2519 alloy was greatly enhanced to nearly 550MPa (ultimate tensile strength, UTS) and 520MPa (yield strength, YS) by severe cold rolling or equal channel angular processing (ECAP) while the elongation decreased to 5%. The 2519 alloy could obtain quite well mechanical properties as much as 80 % and 12 passes cold rolling deformation. This indicated that pre-deformation by ECAP is effective in improving the mechanical properties of 2519 alloy by grain refinement, strain aging and high density dislocations.


2016 ◽  
Vol 688 ◽  
pp. 90-95 ◽  
Author(s):  
Ondřej Mikala ◽  
Miloslav Milichovský ◽  
Jan Gojný ◽  
Matěj Hájek

Biological effects of essential oils are investigated for many years. This work is focused on exploring the influence of saturated vapours components of essential oils on the mechanical, optical and chemical properties of cellulose and lignocellulose materials. Diluted vapours of active ingredients of essential oils could be used in future to protect archives made of cellulose materials. For testing were chosen ingredients of essential oils, that showed the highest bactericidal activity. Saturated vapours of these components act on selected cellulose and lignocellulose materials for a predetermined time. From the mechanical properties were measured tensile strength, bending stiffness and compressive strength. Optical properties are represented by the colour difference ∆E and chemical properties by pH change.


Author(s):  
Kaji Fuad ◽  
Bipul Barua ◽  
Mrinal C. Saha ◽  
Thomas Robison ◽  
Sabrina Wells

Room temperature vulcanized (RTV) silicone foams (SFs) have unique thermal and chemical properties due to the presence of inorganic Si-O backbones with organic methyl side groups. However, their low mechanical strength and low tear resistance are major drawbacks for many applications. We have incorporated Nanoclay as reinforcing filler to improve mechanical properties of silicone foams. A three step blending process was used to disperse Nanoclay in silicone elastomers. Initially, Nanoclay in the concentration range of 0.5%–1% by weight were mixed to silicone polymer using a mechanical mixer at 1200 rpm for 10 min followed by a tip sonication at 20% amplitude for 1 hr. Finally, a high speed mechanical mixer was used at 2000 rpm for 2 hours. Two different types of Nanoclays with different sizes were investigated. Both compression and tear properties were found to improve with addition of 0.5 wt% Nanoclay. It was found that the smaller Nanoclay particle size showed the best compressive property while the Nanoclay with larger particle size improved tear strength the greatest.


2006 ◽  
Vol 114 ◽  
pp. 145-150 ◽  
Author(s):  
Pawel Widlicki ◽  
Halina Garbacz ◽  
Małgorzata Lewandowska ◽  
Wacław Pachla ◽  
Mariusz Kulczyk ◽  
...  

Hydrostatic extrusion can be viewed as one of the methods of Severe Plastic Deformation, SPD, for the fabrication of ultra-fine grained alloys which causes a significant increase in the mechanical properties such as tensile strength and hardness. In the present study the microstructure of 6082 aluminium alloy after hydrostatic extrusion was investigated. Hydroextrusion was performed in three steps with accumulated true strains of 1.34, 2.73 and 3.74 respectively. Microstructural observations were carried out using SEM, TEM and light microscopy. Grain and inclusion sizes, shapes and distribution were investigated in the HE processed samples. The study has shown that the hydrostatic extrusion process results in a profound refinement of both the grain size and the inclusions in 6082 aluminium alloy.


Author(s):  
Ali Alhaidar ◽  
Ali Ali ◽  
Mayssa Shash

This research studies the effect of adding the clinker as a filling material on the properties of Acrylonitrilebutadiene rubber NBR ،by means of preparing rubber blends containing different percentage (0,5,10,15,20 Phr) of theclinker (Semi made-cement) ،on two roll mill. Physio -mechanical and chemical properties of the prepared blends weredescribed by testing them for tensile strength and abrasion resistance, values of hardness and swelling in differentsolvents. Results revealed a decrease in the tension resistance for rubber blends c/k at the percentage of 45% withincrease of the percentage of the clinker added with the above mentioned rubber blends ,Also ,values of hardnessdecreased direct proportional at a percentage of 19% with increasing the clinker ,percentage whereas, the frictionresistance decreased at a percentage of 254% with increasing the clinker percentage ,but according to elongation ,theresults were quite different from the previous results so that its percentage increased when cutting gradually with thevalue of 266%when percentage of added clinker increased. Results of the study also, revealed that swelling of thesamples containing only the black carbon (C45K0) was low comparing with the samples containing the clinker.


Author(s):  
S. K. Padisala ◽  
A. Bhardwaj ◽  
K. Poluri ◽  
A. K. Gupta

Nitinol shape memory alloy is well known for its shape memory effect and super elastic effect. In the present work, the improvement of mechanical properties of nitinol alloy like yield strength, ultimate tensile strength and micro-hardness is discussed along with the study of evolution of micro-structure after every pass to extend the applications of shape memory alloys into high strength application areas. Severe plastic deformation processes are usually adopted for producing fine grain structures which improve the mechanical properties of a material. One such severe deformation process is constrained groove pressing, which is considered as one of the best severe plastic deformation techniques for sheet metals. The results of constrained groove pressing process on nitinol alloy show that the yield strength and the ultimate tensile strength have increased by about 3.6 times 2.5 times respectively, with an increment of 50% and 74% in micro-hardness after 1st pass of constrained groove pressing and 2nd pass of constrained groove pressing respectively. Microstructure shows increase in martensitic phase after constrained groove pressing processing. Increasing in twinning and grain boundary density can be observed in constrained groove pressing processed nitinol, which are the reasons for the tremendous increase in the strength of the alloy. Thus, the constrained groove pressing process on nitinol alloy can increase its range of application for high strength requirements.


2018 ◽  
Vol 1 (1) ◽  
pp. 77-90
Author(s):  
Walaa Abdelaziem ◽  
Atef Hamada ◽  
Mohsen A. Hassan

Severe plastic deformation is an effective method for improving the mechanical properties of metallic alloys through promoting the grain structure. In the present work, simple cyclic extrusion compression technique (SCEC) has been developed for producing a fine structure of cast Al-1 wt. % Cu alloy and consequently enhancing the mechanical properties of the studied alloy. It was found that the grain structure was significantly reduced from 1500 µm to 100 µm after two passes of cyclic extrusion. The ultimate tensile strength and elongation to failure of the as-cast alloy were 110 MPa and 12 %, respectively. However, the corresponding mechanical properties of the two pass CEC deformed alloy are 275 MPa and 35%, respectively. These findings ensure that a significant improvement in the grain structure has been achieved. Also, cyclic extrusion deformation increased the surface hardness of the alloy by 49 % after two passes. FE-simulation model was adopted to simulate the deformation behavior of the material during the cyclic extrusion process using DEFORMTM-3D Ver11.0. The FE-results revealed that SCEC technique was able to impose severe plastic strains with the number of passes. The model was able to predict the damage, punch load, back pressure, and deformation behavior.


Author(s):  
Aleksandra Towarek ◽  
Wojciech Jurczak ◽  
Joanna Zdunek ◽  
Mariusz Kulczyk ◽  
Jarosław Mizera

AbstractTwo model aluminium-magnesium alloys, containing 3 and 7.5 wt.% of Mg, were subjected to plastic deformation by means of hydrostatic extrusion (HE). Two degrees of deformation were imposed by two subsequent reductions of the diameter. Microstructural analysis and tensile tests of the materials in the initial state and after deformation were performed. For both materials, HE extrusion resulted in the deformation of the microstructure—formation of the un-equilibrium grain boundaries and partition of the grains. What is more, HE resulted in a significant increase of tensile strength and decrease of the elongation, mostly after the first degree of deformation.


Sign in / Sign up

Export Citation Format

Share Document