scholarly journals Ultrabright Fluorescent Silica Nanoparticles for Dual pH and Temperature Measurements

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1524
Author(s):  
Saquib Ahmed M. A. Peerzade ◽  
Nadezhda Makarova ◽  
Igor Sokolov

The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2–3% °C−1 for the measurements of temperature and 2–6% pH−1 for acidity.

Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 905
Author(s):  
Saquib Ahmed M. A. Peerzade ◽  
Nadezda Makarova ◽  
Igor Sokolov

Fluorescent tagging is a popular method in biomedical research. Using multiple taggants of different but resolvable fluorescent spectra simultaneously (multiplexing), it is possible to obtain more comprehensive and faster information about various biochemical reactions and diseases, for example, in the method of flow cytometry. Here we report on a first demonstration of the synthesis of ultrabright fluorescent silica nanoporous nanoparticles (Star-dots), which have a large number of complex fluorescence spectra suitable for multiplexed applications. The spectra are obtained via simple physical mixing of different commercially available fluorescent dyes in a synthesizing bath. The resulting particles contain dye molecules encapsulated inside of cylindrical nanochannels of the silica matrix. The distance between the dye molecules is sufficiently small to attain Forster resonance energy transfer (FRET) coupling within a portion of the encapsulated dye molecules. As a result, one can have particles of multiple spectra that can be excited with just one wavelength. We show this for the mixing of five, three, and two dyes. Furthermore, the dyes can be mixed inside of particles in different proportions. This brings another dimension in the complexity of the obtained spectra and makes the number of different resolvable spectra practically unlimited. We demonstrate that the spectra obtained by different mixing of just two dyes inside of each particle can be easily distinguished by using a linear decomposition method. As a practical example, the errors of demultiplexing are measured when sets of a hundred particles are used for tagging.


Author(s):  
Nadja Klippel ◽  
Gregor Jung ◽  
Guido Kickelbick

AbstractSilica nanoparticles with embedded fluorescent dyes represent an important class of markers for example in biological imaging. We systematically studied the various incorporation mechanisms of fluorescent xanthene dyes in 30–40 nm silica nanoparticles. An important parameter was the interaction of the dye with the matrix material, either by weak electrostatic or strong covalent interactions, which also has implications on the stability of fluorescence and brightness of the dyes. Factors that can influence leaching of dyes such as the position of the dyes in particles and the intensity of the particle-dye interaction were investigated by using the solvatochromic effect of xanthene dyes and by stationary fluorescence anisotropy measurements. We compared uranine and rhodamine B, which were physically embedded, with modified fluorescein isothiocyanate and rhodamine B isothiocyanate, which were covalently bound to the silica matrix within a usual Stöber synthesis. Systematic leaching studies of time spans up to 4 days revealed that covalent bonding of dyes like fluorescein isothiocyanate or rhodamine B isothiocyanate is necessary for fluorescence stability, since dyes bound by physical interaction tend to leach out of porous silica networks. Coverage of silica particles with hydrophobic protection layers of alkyltrialkoxysilanes or hydrophilic polyethylene glycol (PEG) groups resulted in a better retention of physisorbed dyes and provides the possibility to adapt the particles to the polarity of the medium. Best results were archived with PEG groups, but even small trimethylsilyl (TMS) groups already reduce leaching.


2000 ◽  
Vol 660 ◽  
Author(s):  
Amarjeet Kaur ◽  
Mario J. Cazeca ◽  
Kethinni G. Chittibabu ◽  
Jayant Kumar ◽  
Sukant K. Tripathy

ABSTRACTOrganic electroluminescent (EL) diodes based on fluorescent dyes and conducting polymers have attracted the interest of researchers, mainly because of their emission in the visible region and for application to large area portable flat panel display devices, driven at low voltages. Therefore, for the development of higher efficiency polymer EL diodes, the optimal combination of the merits of organic fluorescent dye molecules with that of conjugated polymer is an important approach. We report electroluminescence studies of polymer light emitting diodes (p-LEDs) fabricated with poly[2-(3-thienyl)ethanol n-butoxy carbonylmethyl urethane] (PURET) and its composite with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H pyran (DCM) dye. These materials have been chosen in view of the fact that PURET exhibits a small overlap between emission and absorption spectra whereas DCM has a good efficiency of trapping both electrons as well as holes. Polyaniline has been utilized as hole injecting layer whereas tris-8-hydroxyquinoline-aluminum as electron injecting layer. Enhanced electroluminescence with bright yellow color has been observed in p-LEDs by the addition of dye.


2018 ◽  
Vol 91 (4) ◽  
pp. 767-775 ◽  
Author(s):  
Yuanbing Zhou ◽  
Yoshimasa Yamamoto ◽  
Seiichi Kawahara

ABSTRACT Graft copolymerization of vinyltriethoxysilane (VTES) onto NR particles in the latex stage is a unique reaction, since it occurs together with hydrolysis and condensation of the triethoxysilane group of VTES to form a colloidal silica linking to the rubber particles. These reactions may contribute to the formation of a silica nanomatrix structure that consists of a dispersoid of rubber particles as the major component and a silica matrix as the minor component. Here, the graft copolymerization of VTES followed by hydrolysis and condensation is investigated to determine a suitable condition to prepare NR with a silica nanomatrix structure. The mechanical properties of the resulting graft copolymer are discussed in relation to the morphology, silica content, and gel content of the rubber. Based on morphological observations, NR particles with an average diameter of approximately 1 μm are well dispersed in a nanomatrix consisting of silica nanoparticles. The thickness of the silica nanomatrix increases as the monomer concentration increases, and a long incubation time generates large silica nanoparticles. The tensile strength and viscoelastic properties are significantly improved by forming the silica nanomatrix structure, with its continuous structure that prevents the NR particles from merging.


ACS Omega ◽  
2021 ◽  
Author(s):  
Yoshio Nakahara ◽  
Yukiho Nakajima ◽  
Soichiro Okada ◽  
Jun Miyazaki ◽  
Setsuko Yajima

2017 ◽  
Vol 70 ◽  
pp. 142-151
Author(s):  
R.L. Roten ◽  
S.L. Post ◽  
A. Werner ◽  
M. Safa ◽  
A.J. Hewitt

The quantification of spray mass has historically been accomplished by means of fluorescent dyes and various string and ground samplers to capture the dye-laden spray. However, these methods are typically not used in close proximity to orchard sprayers and are prone to many sources of error. The objective of this study was to assess the ability of an in-field phase Doppler (pD) interferometer to quantify spray mass against two common string samplers. Measurements were taken at 0.5 m increments to 4.5 m vertically and 1.0 m increments to 5.0 m downwind from the spray. Converted flux measurements from the strings were compared with those obtained using the pD interferometer. The current pD technology was found to be incapable of collecting equivalent flux data to that obtained from the strings. However, the pD equipment did provide useful data on droplet velocity and size.


2021 ◽  
pp. 000370282110275
Author(s):  
Rachel Rex ◽  
Soumik Siddhanta ◽  
Ishan Barman

Fluorescence imaging is a major driver of discovery in biology, and an invaluable asset in clinical diagnostics. To overcome quenching limitations of conventional fluorescent dyes and further improve intensity, nanoparticle-based constructs have been the subject of intense investigation, and within this realm, dye-doped silica-coated nanoparticles have garnered significant attention. Despite their growing popularity in research, fluorescent silica nanoparticles suffer from a significant flaw. The degradation of these nanoparticles in biological media by hydrolytic dissolution is underreported, leading to serious misinterpretations, and limiting their applicability for live cell and in vivo imaging. Here, the development of an ultra-stable, dye-embedded, silica-coated metal nanoparticle is reported, and its superior performance in long-term live cell imaging is demonstrated. While conventional dye-doped silica nanoparticles begin to degrade within an hour in aqueous media, by leveraging a modified liquid calcination process, this new construct is shown to be stable for at least 24 h. The stability of this metal-enhanced fluorescent probe in biologically relevant temperatures and media, and its demonstrated utility for cell imaging, paves the way for its future adoption in biomedical research.


2020 ◽  
Vol 56 (44) ◽  
pp. 5981-5984
Author(s):  
Nicole E. Arsenault ◽  
Kathleen T. Downey ◽  
Michael O. Wolf

Environment-responsive fluorophores are attached to mesoporous silica nanoparticles that can be used for sensing water concentration around biologically-relevant substrates.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2934
Author(s):  
Emilia Zachanowicz ◽  
Magdalena Kulpa-Greszta ◽  
Anna Tomaszewska ◽  
Małgorzata Gazińska ◽  
Monika Marędziak ◽  
...  

The PRHD@MnFe2O4 binary hybrids have shown a potential for applications in the biomedical field. The polymer cover/shell provides sufficient surface protection of magnetic nanoparticles against adverse effects on the biological systems, e.g., it protects against Fenton’s reactions and the generation of highly toxic radicals. The heating ability of the PRHD@MnFe2O4 was measured as a laser optical density (LOD) dependence either for powders as well as nanohybrid dispersions. Dry hybrids exposed to the action of NIR radiation (808 nm) can effectively convert energy into heat that led to the enormous temperature increase ΔT 170 °C (>190 °C). High concentrated colloidal suspensions (5 mg/mL) can generate ΔT of 42 °C (65 °C). Further optimization of the nanohybrids amount and laser parameters provides the possibility of temperature control within a biologically relevant range. Biological interactions of PRHD@MnFe2O4 hybrids were tested using three specific cell lines: macrophages (RAW 264.7), osteosarcoma cells line (UMR-106), and stromal progenitor cells of adipose tissue (ASCs). It was shown that the cell response was strongly dependent on hybrid concentration. Antimicrobial activity of the proposed composites against Escherichia coli and Staphylococcus aureus was confirmed, showing potential in the exploitation of the fabricated materials in this field.


2015 ◽  
Vol 3 (45) ◽  
pp. 8775-8781 ◽  
Author(s):  
Yi-Feng Wang ◽  
Jing Che ◽  
Yong-Chao Zheng ◽  
Yuan-Yuan Zhao ◽  
Fei Chen ◽  
...  

Rigid structures provided by silica matrix restrict the intramolecular rotations of AIE molecules, and fluorescence of CWQ-11@SiO2 nanoparticles maintains excellent pH-, viscosity- and photo-stability, especially stable in simulated gastric fluid.


Sign in / Sign up

Export Citation Format

Share Document