scholarly journals Experimental Pore-Scale Study of a Novel Functionalized Iron-Carbon Nanohybrid for Enhanced Oil Recovery (EOR)

Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 103
Author(s):  
Fatemeh Razavirad ◽  
Abbas Shahrabadi ◽  
Parham Babakhani Dehkordi ◽  
Alimorad Rashidi

Nanofluid flooding, as a new technique to enhance oil recovery, has recently aroused much attention. The current study considers the performance of a novel iron-carbon nanohybrid to EOR. Carbon nanoparticles was synthesized via the hydrothermal method with citric acid and hybridize with iron (Fe3O4). The investigated nanohybrid is characterized by its rheological properties (viscosity), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analysis. The efficiency of the synthetized nanoparticle in displacing heavy oil is initially assessed using an oil–wet glass micromodel at ambient conditions. Nanofluid samples with various concentrations (0.05 wt % and 0.5 wt %) dispersed in a water base fluid with varied salinities were first prepared. The prepared nanofluids provide high stability with no additive such as polymer or surfactant. Before displacement experiments were run, to achieve a better understanding of fluid–fluid and grain–fluid interactions in porous media, a series of sub-pore scale tests—including interfacial tension (IFT), contact angle, and zeta potential—were conducted. Nanofluid flooding results show that the nanofluid with the medium base fluid salinity and highest nanoparticle concertation provides the highest oil recovery. However, it is observed that increasing the nanofluid concentration from 0.05% to 0.5% provided only three percent more oil. In contrast, the lowest oil recovery resulted from low salinity water flooding. It was also observed that the measured IFT value between nanofluids and crude oil is a function of nanofluid concentration and base fluid salinities, i.e., the IFT values decrease with the increase of nanofluid concentration and base fluid salinity reduction. However, the base fluid salinity enhancement leads to wettability alteration towards more water-wetness. The main mechanisms responsible for oil recovery enhancement during nanofluid flooding is mainly attributed to wettability alteration toward water-wetness and micro-dispersion formation. However, the interfacial tension (IFT) reduction using the iron-carbon nanohybrid is also observed but the reduction is not significant.

1964 ◽  
Vol 4 (02) ◽  
pp. 115-123 ◽  
Author(s):  
Necmettin Mungan

Abstract Laboratory water floods were performed in oil-wet and water-wet alundum and Torpedo cores, displacing a refined oil with n-hexylamine or Triton X-100 solution. Also, some flood were performed in which a sucrose solution was displaced with n-butyl alcohol. The purpose of the tests was to see if the oil recovery could be increased and to examine what role the interfacial tension reduction and wettability change play in the recovery mechanism. It was found that the chromatographic transport of amine was influenced by core wettability. In oil-wet cores, the rate of advance of the amine band could be predicted from equilibrium chromatography, while in water-wet cores the amine band moved faster than predicted, indicating a nonequilibrium process. By reducing the interfacial tension to 1.1 dyne/cm, oil recovery was increased. More oil was recovered from Dri-filmed cores than from water-wet cores. Reversing the wettability of the porous media from oil-wet condition also resulted in some additional oil recovery. Neutral wettability floods did not increase oil recovery. Introduction Interfacial forces in petroleum reservoirs are responsible for retention of large quantities of residual oil. Increasing exploration costs have created an incentive to attempt recovery of this residual oil by new and novel processes. One novel process involves changing the interfacial forces by introducing a chemical into the reservoir during water flooding. Recently, several investigators have carried out laboratory displacement tests using amines. The amines adsorbed onto initially water-wet core surfaces, changing them to oil wet. Additional oil was recovered when the cores were flooded in a manner reversing the wettability from oil-wet conditions. In all these studies, the wettability reversal was considered responsible for increased oil recoveries although it was noted that amines also reduced oil-water interfacial tension. In the present study, displacement experiments were performed in water-wet and Dri-filmed cores. The purpose was to separate the effects of lowering the interfacial tension from changing the wettability. LABORATORY STUDY All experimental data given in this paper have been obtained at a temperature of 70F +/- 1 and prevailing atmospheric pressure. FLUIDS AND MATERIALS The oil used in these experiments was washed with H2SO4 and passed through two 100–200 mesh silica-gel beds to remove unsaturates and surface active impurities. Normal hexylamine of practical purity was used, and the alundum cores were composed of nearly pure Al2O3. Fused quartz (SiO2) and Lucalox (Al2O3) plates were used in the contact angle measurements. DISPLACEMENT TESTS Displacement tests were performed in alundum and Torpedo cores. Before displacement runs, cores were acidized with 0.1 normal HCl, flushed with distilled water and fired at 1,200F to make them water wet. This procedure also reduced water sensitivity of the Torpedo cores. Oil-wet cores were prepared from water-wet cores by flowing several pore volumes of 1 per cent by weight Dri-film SC-87 solution in heptane through the cores, flushing the cores with nitrogen, evacuating, and finally heating the cores at 300F for 4 or 5 hours. Between floods, cores were cleaned by conventional procedures and treated again as above. SPEJ P. 115ˆ


2021 ◽  
Vol 11 (4) ◽  
pp. 1925-1941
Author(s):  
M. Sadegh Rajabi ◽  
Rasoul Moradi ◽  
Masoud Mehrizadeh

AbstractThe wettability preference of carbonate reservoirs is neutral-wet or oil-wet as the prevailing of hydrocarbon reserves that affects approximately half of the total production of hydrocarbons of the world. Therefore, due to surface wettability of carbonate rocks the notable fraction of oil is held inside their pores in comparison with sandstones. Since shifting the wettability preference toward water-wet system is of great interest, numerous components were used for this purpose. In this experimental research, the wettability alteration of dolomite surface by interacting with a novel nano-surfactant–alkaline fluid has been investigated in order to diminish its adhesion to crude oil droplets. The solutions were prepared by homogenous mixing of nanosilica particles with cetyl trimethyl ammonium bromide and sodium carbonate, respectively, as a cationic surfactant and alkaline agent. The maximum wettability alteration from oil-wet to water system was obtained by employing a mixture of nanoparticles in association with surfactant–alkaline. Then, the fluids were employed in core-surface from detached and attached forms to compare their interfacial effects on saturated thin sections by crude oil and to measure the wettability. In addition, the interfacial tension (IFT) between solutions and crude oil was investigated and the maximum IFT reduction was obtained from nano-surfactant. Finally, all chemical solutions were flooded to the dolomite plugs separately after water flooding in order to evaluate the maximum oil recovery factor acquired by nano-surfactant.


2019 ◽  
Vol 10 (4) ◽  
pp. 1551-1563 ◽  
Author(s):  
Siamak Najimi ◽  
Iman Nowrouzi ◽  
Abbas Khaksar Manshad ◽  
Amir H. Mohammadi

Abstract Surfactants are used in the process of chemical water injection to reduce interfacial tension of water and oil and consequently decrease the capillary pressure in the reservoir. However, other mechanisms such as altering the wettability of the reservoir rock, creating foam and forming a stable emulsion are also other mechanisms of the surfactants flooding. In this study, the effects of three commercially available surfactants, namely AN-120, NX-1510 and TR-880, in different concentrations on interfacial tension of water and oil, the wettability of the reservoir rock and, ultimately, the increase in oil recovery based on pendant drop experiments, contact angle and carbonate core flooding have been investigated. The effects of concentration, temperature, pressure and salinity on the performances of these surfactants have also been shown. The results, in addition to confirming the capability of the surfactants to reduce interfacial tension and altering the wettability to hydrophilicity, show that the TR-880 has the better ability to reduce interfacial tension than AN-120 and NX-1510, and in the alteration of wettability the smallest contact angle was obtained by dissolving 1000 ppm of surfactant NX-1510. Also, the results of interfacial tension tests confirm the better performances of these surfactants in formation salinity and high salinity. Additionally, a total of 72% recovery was achieved with a secondary saline water flooding and flooding with a 1000 ppm of TR-880 surfactant.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3988 ◽  
Author(s):  
Omid Haghighi ◽  
Ghasem Zargar ◽  
Abbas Khaksar Manshad ◽  
Muhammad Ali ◽  
Mohammad Takassi ◽  
...  

Production from mature oil reservoirs can be optimized by using the surfactant flooding technique. This can be achieved by reducing oil and water interfacial tension (IFT) and modifying wettability to hydrophilic conditions. In this study, a novel green non-ionic surfactant (dodecanoyl-glucosamine surfactant) was synthesized and used to modify the wettability of carbonate reservoirs to hydrophilic conditions as well as to decrease the IFT of hydrophobic oil–water systems. The synthesized non-ionic surfactant was characterized by Fourier transform infrared spectroscopy (FTIR) and chemical shift nuclear magnetic resonance (HNMR) analyses. Further pH, turbidity, density, and conductivity were investigated to measure the critical micelle concentration (CMC) of surfactant solutions. The result shows that this surfactant alters wettability from 148.93° to 65.54° and IFT from 30 to 14 dynes/cm. Core-flooding results have shown that oil recovery was increased from 40% (by water flooding) to 59% (by surfactant flooding). In addition, it is identified that this novel non-ionic surfactant can be used in CO2 storage applications due to its ability to alter the hydrophobicity into hydrophilicity of the reservoir rocks.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2305
Author(s):  
Xiangbin Liu ◽  
Le Wang ◽  
Jun Wang ◽  
Junwei Su

The particles, water and oil three-phase flow behaviors at the pore scale is significant to clarify the dynamic mechanism in the particle flooding process. In this work, a newly developed direct numerical simulation techniques, i.e., VOF-FDM-DEM method is employed to perform the simulation of several different particle flooding processes after water flooding, which are carried out with a porous structure obtained by CT scanning of a real rock. The study on the distribution of remaining oil and the displacement process of viscoelastic particles shows that the capillary barrier near the location with the abrupt change of pore radius is the main reason for the formation of remaining oil. There is a dynamic threshold in the process of producing remaining oil. Only when the displacement force exceeds this threshold, the remaining oil can be produced. The flow behavior of particle–oil–water under three different flooding modes, i.e., continuous injection, alternate injection and slug injection, is studied. It is found that the particle size and the injection mode have an important influence on the fluid flow. On this basis, the flow behavior, pressure characteristics and recovery efficiency of the three injection modes are compared. It is found that by injecting two kinds of fluids with different resistance increasing ability into the pores, they can enter into different pore channels, resulting in the imbalance of the force on the remaining oil interface and formation of different resistance between the channels, which can realize the rapid recovery of the remaining oil.


2021 ◽  
Author(s):  
Xu-Guang Song ◽  
Ming-Wei Zhao ◽  
Cai-Li Dai ◽  
Xin-Ke Wang ◽  
Wen-Jiao Lv

AbstractThe ultra-low permeability reservoir is regarded as an important energy source for oil and gas resource development and is attracting more and more attention. In this work, the active silica nanofluids were prepared by modified active silica nanoparticles and surfactant BSSB-12. The dispersion stability tests showed that the hydraulic radius of nanofluids was 58.59 nm and the zeta potential was − 48.39 mV. The active nanofluids can simultaneously regulate liquid–liquid interface and solid–liquid interface. The nanofluids can reduce the oil/water interfacial tension (IFT) from 23.5 to 6.7 mN/m, and the oil/water/solid contact angle was altered from 42° to 145°. The spontaneous imbibition tests showed that the oil recovery of 0.1 wt% active nanofluids was 20.5% and 8.5% higher than that of 3 wt% NaCl solution and 0.1 wt% BSSB-12 solution. Finally, the effects of nanofluids on dynamic contact angle, dynamic interfacial tension and moduli were studied from the adsorption behavior of nanofluids at solid–liquid and liquid–liquid interface. The oil detaching and transporting are completed by synergistic effect of wettability alteration and interfacial tension reduction. The findings of this study can help in better understanding of active nanofluids for EOR in ultra-low permeability reservoirs.


SPE Journal ◽  
2022 ◽  
pp. 1-13
Author(s):  
Song Qing ◽  
Hong Chen ◽  
Li-juan Han ◽  
Zhongbin Ye ◽  
Yihao Liao ◽  
...  

Summary α-Zirconium phosphate (α-ZrP) nanocrystals were synthesized by refluxing method and subsequently exfoliated into extremely thin 2D nanosheets by tetrabutylammonium hydroxide (TBAOH) solution. Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to characterize the size distribution and morphology of α-ZrP nanosheets. Interfacial tension (IFT) and contact angle measurement were conducted by different concentrations of α-ZrP nanosheets solutions. The results displayed that the wettability of porous media surface was altered from oleophilic to hydrophilic and the IFT decreased with the increasing of α-ZrP nanosheets concentrations. A new method was proposed to calculate the Hamaker constant for 2D α-ZrP nanosheets. The calculated results displayed that α-ZrP nanosheets were not easy to agglomerate under experimental environment and when the interaction energy barrier increased, the transport amount of α-ZrP nanosheets also increased. Coreflooding tests were also performed with various concentrations and the oil recovery efficiency increased from 33.59 to 51.26% when α-ZrP nanosheets concentrations increased from 50 to 1,000 ppm.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


Sign in / Sign up

Export Citation Format

Share Document