scholarly journals Composites Based on Nanoparticle and Pan Electrospun Nanofiber Membranes for Air Filtration and Bacterial Removal

Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1740 ◽  
Author(s):  
Ana Cláudia Canalli Bortolassi ◽  
Vádila Giovana Guerra ◽  
Mônica Lopes Aguiar ◽  
Laurence Soussan ◽  
David Cornu ◽  
...  

Often, solid matter is separated from particle-laden flow streams using electrospun filters due to their high specific surface area, good ability to capture aerial particulate matter, and low material costs. Moreover, electrospinning allows incorporating nanoparticles to improve the filter’s air filtration efficiency and bacterial removal. Therefore, a new, improved polyacrylonitrile (PAN) nanofibers membrane that could be used to remove air pollutants and also with antibacterial activity was developed. We engineered three different filters that are characterized by the different particles embedded in the PAN nanofibers: titanium dioxide (TiO2), zinc oxide (ZnO), and silver (Ag). Then, their filtration performance was assessed by quantifying the filtration of sodium chloride (NaCl) aerosol particles of 9 to 300 nm in diameter using a scanning mobility particle sizer. The TiO2_F filter displayed the smallest fiber diameter and the highest filtration efficiency (≈100%). Conversely, the Ag_F filter showed the highest quality factor (≈0.06 Pa−1) because of the lower air pressure drop. The resulting Ag_F nanofibers displayed a very good antibacterial activity using an Escherichia coli suspension (108 CFU/mL). Moreover, the quality factor of these membranes was higher than that of the commercially available nanofiber membrane for air filtration.

Author(s):  
Le Kang ◽  
Yuankun Liu ◽  
Liping Wang ◽  
Xiaoping Gao

Abstract The filtration layer in a medical protective mask can effectively prevent aerosol particles that might carry viruses from air. A nanofiber/microfiber composite membrane (NMCM) was successfully fabricated by electrospinning polyvinylidene fluoride (PVDF) nanofibers collected on the electrified and melt-blown polypropylene (PP) nonwovens, aiming to improve the filtration efficiency and reduce the resistance of respiration of mask. A four-factor and three-level orthogonal experiment was designed to study the effect of electrospinning parameters such as spinning solution concentration, voltage, tip-collect distance (TCD), and flow rate of solution on the filtration efficiency, resistance of respiration as well as quality factor of NMC developed to predict the resistance of respiration. Experimental results demonstrated that the filtration efficiency of NMCM≥95% in comparison to that of electrified and melt-blown PP nonwovens 79.38%, which increases by 19.68%. Additionally, the average resistance of respiration is 94.78 Pa, which meets the protection requirements. Multivariate analysis of variance indicated that the resistance of respiration of the NMCM has significantly dependent on the concentration, voltage, TCD, and flow rate of the spinning solution and the quality factor of the NMCM has dependent on the resistance of respiration. The air permeability ranges from 166.23 to 314.35mm/s, which is inversely proportional to the filtration resistance. As far as the filtration resistance is concerned, the optimal spinning parameters were obtained as follows. The concentration of spinning solution is 15%, the voltage is 27 kV, the TCD is 22 cm, and the flow rate is 2.5 mL/h. The relative error of the BP neural network varies from 0.49505% to 1.49217%, i.e. the error value varies from 0.17 to1.33 Pa. The predicted resistance of respiration corresponding to the optimal process is 68.1374 Pa.


2013 ◽  
Vol 643 ◽  
pp. 120-124
Author(s):  
Yi Jui Chiu ◽  
Chia Hao Yang ◽  
Luh Maan Chang ◽  
Khai Shoon Leong

This paper aims to develop in the semiconductor plant molecular filtration efficiency with properties of semiconductor materials in the real-time. The goal of the assessment is to propose a new device based on the technologies assessed. First, the Scanning Mobility Particle Sizer Spectrometer with CPC (SMPS+C), a description of how each counter works is given. Second, a new experiment method for HEPA/ULPA filter efficiency certification in the real-time in semiconductor industry is developed. The experimental results showed that the performance of capillary had been installed and cleaned. The SMPS mean diameter fell within the range of the NIST standard. And, the HEPA/ULPA filter efficiency certification is explored. The best filtration efficiency particles size is 0.16μm. The results of this research provide the engineers with very useful information in semiconductor industry.


2016 ◽  
Vol 87 (2) ◽  
pp. 208-215 ◽  
Author(s):  
Li-Hua Lou ◽  
Xiao-Hong Qin ◽  
Hongnan Zhang

In this paper, patterned nanofibrous membranes were fabricated for air filtration. Polyacrylonitrile was employed as the electrospinning material as its fluffy property and bulged bubble template served as collector to prepare the patterned membrane. With this special structure, the pressure drop significantly declined from 151.7 to 24.7 mmH2O, although the filtration efficiency of nanofiber membranes exhibited a slight decline from 99.94% to 96.33% compared to traditional electrospinning nanofibrous membranes. These sharp declines of the pressure drop while retaining the filtration efficiency imply that it could have more extensive applications.


Author(s):  
Mingchao Han ◽  
Hongwei He ◽  
Weikang Kong ◽  
Kun Dong ◽  
Bangying Wang ◽  
...  

The current pandemic caused by Covid-19 triggered intensively the development of high-performance air filters. Polypropylene (PP) is widely used as the raw material of meltblown nonwovens that is the core layer in air filters, such as, masks. In this study, an electret PP meltblown nonwoven with antibacterial activity was developed, and nano boehmite (AlOOH) and nano-ZnO employed as electret and antibacterial agent, respectively. 0.5-2.0 wt% of AlOOH and 1.0 wt% of ZnO were doped into PP matrix using a twin-screw extruder and the resulting masterbatches applied as raw materials to afford nonwovens via a meltblown process. The as-prepared nonwovens were characterized by means of SEM, IR and DSC/TG, and after corona charging, the filtration efficiency, charge decay and antibacterial properties were evaluated. More than 1.0 wt% dosage of AlOOH endowed the nonwoven with high filtration efficiency and 1.0 wt% of ZnO brought about antibacterial activity. Corona charging was an effective means to make the nonwovens electret charged and the charges were quicker to decay in air than in a sealed bag. The as-prepared meltblown nonwoven would be a remarkably promising filter in air filtration.


Author(s):  
Malte Bierwirth ◽  
Vinzent Olszok ◽  
Varun Aiyar Ganesan ◽  
Jalal Poostforooshan ◽  
Alfred P. Weber

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Trong Duc Le ◽  
Ngoc Nam Pham ◽  
Tien Cong Nguyen

N-(4-Substituted phenyl)acetamides, which were prepared from acetic anhydride and p-substituted anilines, were utilized as precursors for reactions to Vilsmeier-Haack reagent to form 6-substituted-2-chloroquinoline-3-carbaldehydes 3a–c. Meanwhile, a similar reagent was applied to 1-[1-(4-substituted phenyl)ethylidene]-2-phenylhydrazines as substrates, which were synthesized from phenylhydrazine hydrochloride and p-substituted acetophenones, and 1,3-diarylpyrazole-4-carbaldehydes 3d–f were observed as a result. Reactions between the aldehydes 3a–f and 7-chloro-4-hydrazinylquinoline 2, obtained from reaction of 4,7-dichloroquinoline 1 and hydrazine hydrate, formed six new hydrazone compounds, namely, 4-{2-[(6-substituted-2-chloroquinolin-3-yl)methylidene]hydrazinyl}-7-chloroquinolines 4a–c and 4-(2-{[3-(4-substituted phenyl)-1-phenyl-1H-pyrazol-4-yl]methylene}hydrazinyl)-7-chloroquinolines 4d–f. The chemical structures of all synthesized compounds were elucidated by the analysis of IR, 1H, 13C-NMR, and HRMS spectral data. Additionally, all of the synthesized hydrazones were evaluated in terms of cytotoxic activity against four strains of bacteria and four strains of fungus at several concentrations of substrates. As a result, three of them, 4a–c, possess the good ability as growth inhibitor of Bacillus subtilis and Aspergillus niger at the concentration of 25 μg/mL and 50 μg/mL, respectively, while compound 4e only shows a cytotoxic activity against Aspergillus niger at the concentration of 25 μg/mL.


Gefahrstoffe ◽  
2020 ◽  
Vol 80 (01-02) ◽  
pp. 25-32
Author(s):  
C. Asbach ◽  
T. A. J. Kuhlbusch ◽  
U. Quass ◽  
H. Kaminski

Seit Anfang 2009 werden an einer städtischen Hintergrundmessstation in Mülheim-Styrum im westlichen Ruhrgebiet Anzahlkonzentration, Anzahlgrößenverteilung und lungendeponierbare Oberflächenkonzentration submikroner und ultrafeiner Partikel gemessen. Die dazu eingesetzten Messgeräte Scanning Mobility Particle Sizer (SMPS) und Nanoparticle Surface Area Monitor (NSAM) erwiesen sich als gut geeignet für derartige Messaufgaben. Insbesondere das NSAM ist sehr robust und zuverlässig und wird daher neben der Bestimmung der lungendeponierbaren Oberflächenkonzentration auch zur Funktionsüberwachung des SMPS verwendet. Die ultrafeinen Partikel an der Messstation stammen zu einem großen Teil von einer nahegelegenen Autobahn sowie diversen anderen Quellen in der näheren Umgebung. Der etwa 20 km südlich gelegene Flughafen Düsseldorf scheint keinen merklichen Einfluss zu haben. Eine Auswertung der Wochengänge zeigte überraschenderweise, dass in allen Jahren samstagnachts die im Wochenverlauf höchste Anzahlkonzentration von Partikeln >100 nm gemessen wurde. Während an allen anderen Wochentagen die mittleren Konzentrationen seit 2009 kontinuierlich gesunken sind, blieb die Höhe des Maximums in der Nacht von Samstag auf Sonntag nahezu konstant, was auf eine unveränderte, zeitlich sehr begrenzte Quelle hindeutet.


2014 ◽  
Vol 9 (1) ◽  
pp. 155892501400900 ◽  
Author(s):  
S. Sakthivel ◽  
Anban J.J. Ezhil ◽  
T. Ramachandran

This paper reports an investigative study on the fabrication and measurement of the air permeability, mechanical properties, pore size distribution, and filtration efficiency of different nonwoven fabrics produced from reclaimed fibers by analytically changing the machine variables to manipulate the physical parameters of the nonwoven fabrics. Reclaimed fiber of cotton (60%) and polyester (40%) blend was used, so that the prospect of value addition to an inexpensive source of raw material could be explored. The changes in air permeability were interpreted in terms of fabric density profile and pore size distribution. The filtration parameters of filtration efficiency, dust holding capacity, and pressure drop were also calculated. Additionally, the effects of calendering on pore size and filtration properties were evaluated to discover the opportunity of fine-tuning and the performance of the filters. The outcome in this study reflected an overall development in all filtration characteristics due to the calendering operation.


2018 ◽  
Vol 47 (7) ◽  
pp. 777-787 ◽  
Author(s):  
Simon E. Wawra ◽  
Martin Thoma ◽  
Johannes Walter ◽  
Christian Lübbert ◽  
Thaseem Thajudeen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document