scholarly journals β-Cyclodextrin Does not Alter the Bioaccessibility and the Uptake by Caco-2 Cells of Olive By-Product Phenolic Compounds

Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Aurélia Malapert ◽  
Valérie Tomao ◽  
Marielle Margier ◽  
Marion Nowicki ◽  
Béatrice Gleize ◽  
...  

Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.

Author(s):  
Teresa D. Rebaza-Cardenas ◽  
Kenneth Silva-Cajaleón ◽  
Carlos Sabater ◽  
Susana Delgado ◽  
Nilda D. Montes-Villanueva ◽  
...  

AbstractIn this work, two Peruvian beverages “Masato de Yuca,” typical of the Amazonian communities made from cassava (Manihot esculenta), and “Chicha de Siete Semillas,” made from different cereal, pseudo-cereal, and legume flours, were explored for the isolation of lactic acid bacteria after obtaining the permission of local authorities following Nagoya protocol. From an initial number of 33 isolates, 16 strains with different RAPD- and REP-PCR genetic profiles were obtained. In Chicha, all strains were Lactiplantibacillus plantarum (formerly Lactobacillus plantarum), whereas in Masato, in addition to this species, Limosilactobacillus fermentum (formerly Lactobacillus fermentum), Pediococcus acidilactici, and Weissella confusa were also identified. Correlation analysis carried out with their carbohydrate fermentation patterns and enzymatic profiles allowed a clustering of the lactobacilli separated from the other genera. Finally, the 16 strains were submitted to a static in vitro digestion (INFOGEST model) that simulated the gastrointestinal transit. Besides, their ability to adhere to the human epithelial intestinal cell line HT29 was also determined. Following both procedures, the best probiotic candidate was Lac. plantarum Ch13, a robust strain able to better face the challenging conditions of the gastrointestinal tract and showing higher adhesion ability to the intestinal epithelium in comparison with the commercial probiotic strain 299v. In order to characterize its benefit for human health, this Ch13 strain will be deeply studied in further works.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1812
Author(s):  
Juncai Tu ◽  
Margaret Anne Brennan ◽  
Gang Wu ◽  
Weidong Bai ◽  
Ping Cheng ◽  
...  

Sorghum biscuits were enriched with mushroom powders (Lentinula edodes, Auricularia auricula and Tremella fuciformis) at 5%, 10% and 15% substitution levels. An in vitro gastrointestinal digestion was used to evaluate the effect of this enrichment on the phenolic content and soluble peptide content as well as antioxidant activities of the gastric or intestinal supernatants (bio-accessible fractions), and the remaining portions of phenolic compounds, antioxidants and β-glucan in the undigested residue (non-digestible fraction). The phenolic content of the gastric and intestinal supernatants obtained from digested mushroom-enriched biscuits was found to be higher than that of control biscuit, and the phenolic content was positively correlated to the antioxidant activities in each fraction (p < 0.001). L. edodes and T. fuciformis enrichment increased the soluble protein content (small peptide) of sorghum biscuits after in vitro digestion. All mushroom enrichment increased the total phenolic content and β-glucan content of the undigested residue and they were positively correlated (p < 0.001). The insoluble dietary fibre of biscuits was positively correlated with β-glucan content (p < 0.001) of undigested residue. These findings suggested that enriching food with mushroom derived dietary fibre increases the bioavailability of the non-digestible β-glucan and phenolic compounds.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 554
Author(s):  
Marta C. Coelho ◽  
Tânia B. Ribeiro ◽  
Carla Oliveira ◽  
Patricia Batista ◽  
Pedro Castro ◽  
...  

In times of pandemic and when sustainability is in vogue, the use of byproducts, such as fiber-rich tomato byproducts, can be an asset. There are still no studies on the impact of extraction methodologies and the gastrointestinal tract action on bioactive properties. Thus, this study used a solid fraction obtained after the conventional method (SFCONV) and a solid fraction after the ohmic method (SFOH) to analyze the effect of the gastrointestinal tract on bioactive compounds (BC) and bioactivities. Results showed that the SFOH presents higher total fiber than SFCONV samples, 62.47 ± 1.24–59.06 ± 0.67 g/100 g DW, respectively. Both flours present high amounts of resistant protein, representing between 11 and 16% of insoluble dietary fiber. Furthermore, concerning the total and bound phenolic compounds, the related antioxidant activity measured by 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay presented significantly higher values for SFCONV than SFOH samples (p < 0.05). The main phenolic compounds identified in the two flours were gallic acid, rutin, and p-coumaric acid, and carotenoids were lycopene, phytofluene, and lutein, all known as health promoters. Despite the higher initial values of SFCONV polyphenols and carotenoids, these BCs’ OH flours were more bioaccessible and presented more antioxidant capacity than SFCONV flours, throughout the simulated gastrointestinal tract. These results confirm the potential of ohmic heating to modify the bioaccessibility of tomato BC, enhancing their concentrations and improving their antioxidant capacity.


2018 ◽  
Vol 40 ◽  
pp. 751-759 ◽  
Author(s):  
Lorenzo Cecchi ◽  
Maria Bellumori ◽  
Caterina Cipriani ◽  
Alessandra Mocali ◽  
Marzia Innocenti ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1023
Author(s):  
Alice Cattivelli ◽  
Angela Conte ◽  
Serena Martini ◽  
Davide Tagliazucchi

The impact of domestic cooking (baking, boiling, frying and grilling) and in vitro digestion on the stability and release of phenolic compounds from yellow-skinned (YSO) and red-skinned onions (RSO) have been evaluated. The mass spectrometry identification pointed out flavonols as the most representative phenolic class, led by quercetin-derivatives. RSO contained almost the double amount of phenolic compounds respect to YSO (50.12 and 27.42 mg/100 g, respectively). Baking, grilling and primarily frying resulted in an increased amount of total phenolic compounds, especially quercetin-derivatives, in both the onion varieties. Some treatments promoted the degradation of quercetin-3-O-hexoside-4′-O-hexoside, the main compound present in both the onion varieties, leading to the occurrence of quercetin-4′-O-hexoside and protocatechuic acid-4-O-hexoside. After in vitro digestion, the bioaccessibility index for total phenolic compounds ranged between 42.6% and 65.5% in grilled and baked YSO, respectively, and between 39.8% and 80.2% in boiled and baked RSO, respectively. Baking contributed to the highest amount of bioaccessible phenolic compounds for both the onion varieties after in vitro digestion. An in-depth design of the cooking process may be of paramount importance in modulating the gastro-intestinal release of onion phenolic compounds.


2020 ◽  
Vol 8 (5) ◽  
pp. 654
Author(s):  
Ester Betoret ◽  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Marco Dalla Rosa

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.


2020 ◽  
Vol 11 ◽  
Author(s):  
Liwei Chen ◽  
Daoyan Wu ◽  
Joergen Schlundt ◽  
Patricia L. Conway

Lactobacillus fermentum PC1 with proven probiotic properties was used to ferment oats with added honey to develop a probiotic beverage with enhanced bioactive ingredients. The viable Lactobacilli were enumerated during the fermentation and storage at 4°C, as well as after exposure to simulated gastrointestinal tract conditions. Good survival was noted both during storage as well as when exposed to the in vitro digestive tract conditions. Comparative analysis of the antioxidant activity, total phenolic content, and phenolic composition indicated fermentation improved the total antioxidant capacity and phenolic acid concentration. An increase of more than 50% of gallic acid, catechin, vanillic acid, caffeic acid, p-coumaric acid, and ferulic acid was observed in the methanol extracts. Moreover, no significant decrease in the β-glucan content was noted during fermentation and storage. In conclusion, this fermented product has a great potential as a functional food with enhanced probiotic survival and increased bioactive ingredients.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Saleh Abu-Lafi ◽  
Mahmoud Sami Al-Natsheh ◽  
Reem Yaghmoor ◽  
Fuad Al-Rimawi

The production of olive oil generates massive quantities of by-product called olive mill wastewater (OMWW). The uncontrolled disposal of OMWW poses serious environmental problems. The OMWW effluent is rich in several polyphenolic compounds. Liquid-liquid extraction of OMWW using ethyl acetate solvent was used to enrich phenolic compounds under investigation. Total phenolic and flavonoid content and antioxidant activity of the extract were determined. HPLC coupled to photodiode array (PDA) detector was used to analyze the main three phenolic compounds of OMWW, namely, hydroxytyrosol, tyrosol, and oleuropein. The antimicrobial activity of the extract was also investigated. Additionally, the OMWW extract was used as natural preservative and antioxidants for olive oil. Results showed that OMWW is very rich in phenolic compounds and has strong antioxidant activity. HPLC analysis showed that the extract contains mainly hydroxytyrosol and tyrosol but no oleuropein. The OMWW extract showed also positive activities as antibacterial (gram positive and gram negative) and antifungal as well as activities against yeast. The addition of OMWW extract to olive oil samples has an effect on the stability of olive oil as reflected by its acid value, peroxide value, K232 and K270, and total phenolic content.


Sign in / Sign up

Export Citation Format

Share Document