scholarly journals Effect of Drying Process, Encapsulation, and Storage on the Survival Rates and Gastrointestinal Resistance of L. salivarius spp. salivarius Included into a Fruit Matrix

2020 ◽  
Vol 8 (5) ◽  
pp. 654
Author(s):  
Ester Betoret ◽  
Noelia Betoret ◽  
Laura Calabuig-Jiménez ◽  
Cristina Barrera ◽  
Marco Dalla Rosa

In a new probiotic food, besides adequate physicochemical properties, it is necessary to ensure a minimum probiotic content after processing, storage, and throughout gastrointestinal (GI) digestion. The aim of this work was to study the effect of hot air drying/freeze drying processes, encapsulation, and storage on the probiotic survival and in vitro digestion resistance of Lactobacillus salivarius spp. salivarius included into an apple matrix. The physicochemical properties of the food products developed were also evaluated. Although freeze drying processing provided samples with better texture and color, the probiotic content and its resistance to gastrointestinal digestion and storage were higher in hot air dried samples. Non-encapsulated microorganisms in hot air dried apples showed a 79.7% of survival rate versus 40% of the other samples after 28 days of storage. The resistance of encapsulated microorganisms to in vitro digestion was significantly higher (p ≤ 0.05) in hot air dried samples, showing survival rates of 50–89% at the last stage of digestion depending on storage time. In freeze dried samples, encapsulated microorganisms showed a survival rate of 16–47% at the end of digestion. The different characteristics of the food matrix after both processes had a significant effect on the probiotic survival after the GI digestion. Documented physiological and molecular mechanisms involved in the stress response of probiotic cells would explain these results.

1969 ◽  
Vol 54 (1) ◽  
pp. 133-148
Author(s):  
M. A. González ◽  
E. Díaz Negrón ◽  
H. Cancel ◽  
A. C. Rivera

Studies were conducted to dehydrate garden sweet peppers by means of hot-air and freeze-drying. Sweet peppers have tough, leathery skins which makes escape of moisture difficult and prolongs drying time. Our data indicates that dehydration of half-cut or slitted fruit is accomplished either by conventional hot-air or by freeze-drying in reasonably shorter periods of time than whole fruit. Change in color or shape was not observed in sweet peppers during freezedrying. Great deterioration in the green color was observed in the samples dehydrated with hot-air at 165° F. The shelf-life of the freeze-dried product is superior to that of the conventionally hot-air dried product. For freeze-drying the sweet peppers within a reasonable period of time, and to obtain a product with shape and color similar to the fresh fruit, a platen temperature of 180° F. should be used during 2 hours and then reduced to 150° F. during the rest of the drying period. Heat treatment to inactivate microbial activity of sweet peppers prior to freeze-drying greatly reduces the microbial count and does not affect the drying rate, quality and shelf-life of the end product. Deterioration of sweet peppers during drying and storage is characterized by development of off-flavor and color. Because the measurement of off-flavor is difficult in a mild pungent fruit such as sweet peppers, these studies indicate that measurement of changes in color can be used as an index of quality.


2010 ◽  
Vol 78 (1) ◽  
pp. 15-22 ◽  
Author(s):  
Patricia A Bolla ◽  
María de los Angeles Serradell ◽  
Patricio J de Urraza ◽  
Graciela L De Antoni

The effect of freeze-drying on viability and probiotic properties of a microbial mixture containing selected bacterial and yeast strains isolated from kefir grains (Lactobacillus kefir,Lactobacillus plantarum,Lactococcus lactis,Saccharomyces cerevisiaeandKluyveromyces marxianus) was studied. The microorganisms were selected according to their potentially probiotic propertiesin vitroalready reported. Two types of formulations were performed, a microbial mixture (MM) suspended in milk and a milk product fermented with MM (FMM). To test the effect of storage on viability of microorganisms, MM and FMM were freeze-dried and maintained at 4°C for six months. After 180 days of storage at 4°C, freeze-dried MM showed better survival rates for each strain than freeze-dried FMM. The addition of sugars (trehalose or sucrose) did not improve the survival rates of any of the microorganisms after freeze-drying. Freeze-drying did not affect the capacity of MM to inhibit growth ofShigella sonnei in vitro, since the co-incubation of this pathogen with freeze-dried MM produced a decrease of 2 log inShigellaviability. The safety of freeze-dried MM was tested in mice and non-translocation of microorganisms to liver or spleen was observed in BALB/c mice feedad libitumduring 7 or 20 days. To our knowledge, this is the first report about the effect of freeze-drying on viability,in vitroprobiotic properties and microbial translocation of a mixture containing different strains of both bacteria and yeasts isolated from kefir.


2020 ◽  
Vol 98 (Supplement_3) ◽  
pp. 49-50
Author(s):  
Kevin S Jerez Bogota ◽  
Tofuko A Woyengo

Abstract A study was conducted to determine the effects of the period of predigesting whole stillage (WS; slurry material that is dried into DDGS) with multi-enzyme and composition of the multi-enzyme on porcine in vitro digestibility of dry matter (IVDDM) of the WS. Four samples of whole stillage from 4 different sources were freeze-dried and divided into 13 subsamples to give 52 sub-samples. Thirteen treatments were applied to the 48 sub-samples within source. The treatments were undigested WS (control); or pre-digested with 1 of 3 multi-enzymes (MTE1, MTE2, and MTE3) at 55 °C for 6, 12, 18 or 24 h in 3 × 4 factorial arrangement. The MTE1 contained xylanase, β-glucanase, cellulase, mannanase, protease, and amylase; MTE2 contained xylanase, α-galactosidase, and cellulase; and MTE3 contained xylanase, cellulase, β-glucanase, and mannanase. The 52 subsamples were subjected to porcine in vitro digestion. The IVDDM of untreated WS was 73.3%. The IVDDM increased (P< 0.05) with an increase in the predigestion period. However, a rise in the predigestion period from 0 to 12 h resulted in greater (P< 0.05) response in mean IVDDM than an increment in the predigestion period from 12 to 24 h (11 vs. 0.83 percentage points). Predigestion period and multi-enzyme type interacted on IVDDM such that the improvement in IVDDM between 0 and 12 hours of predigestion differed (P< 0.05) among the 3 multi-enzyme types (13.3, 11.1, and 8.5 percentage points for MTE3, MTE2, and MTE1, respectively). The LS means by multi-enzyme treatment were modeled and resulted in unparallel curves (P< 0.05). The estimated maximum response of IVDDM for MTE1, MTE2 and MTE 3 were 82.4%, 84.7% and 87.1% at 15.8, 13 and 13.1 hours, respectively. In conclusion, the optimal time of predigestion of WS with multi-enzymes (with regard to improvement in its IVDDM) was approximately 14 h.


Zygote ◽  
2007 ◽  
Vol 15 (1) ◽  
pp. 15-24 ◽  
Author(s):  
M. Nakai ◽  
N. Kashiwazaki ◽  
A. Takizawa ◽  
N. Maedomari ◽  
M. Ozawa ◽  
...  

SUMMARYSuccessful offspring production after intracytoplasmic injection of freeze-dried sperm has been reported in laboratory animals but not in domesticated livestock, including pigs. The integrity of the DNA in the freeze-dried sperm is reported to affect embryogenesis. Release of endonucleases from the sperm is one of the causes of induction of sperm DNA fragmentation. We examined the effects of chelating agents, which inhibit the activation of such enzymes, on DNA fragmentation in freeze-dried sperm and on the in vitro and in vivo developmental ability of porcine oocytes following boar sperm head injection. Boar ejaculated sperm were sonicated, suspended in buffer supplemented with (1) 50 mM EGTA, (2) 50 mM EDTA, (3) 10 mM EDTA, or (4) no chelating agent and freeze-dried. A fertilization medium (Pig-FM) was used as a control. The rehydrated spermatozoa in each group were then incubated in Pig-FM at room temperature. The rate of DNA fragmentation in the control group, as assessed by the TUNEL method, increased gradually as time after rehydration elapsed (2.8% at 0 min to 12.2% at 180 min). However, the rates in all experimental groups (1–4) did not increase, even at 180 min (0.7–4.1%), which were all significantly lower (p < 0.05) than that of the control group. The rate of blastocyst formation after the injection in the control group (6.0%) was significantly lower (p < 0.05) than those in the 50 mM EGTA (23.1%) and 10 mM EDTA (22.6%) groups incubated for 120–180 min. The average number of blastocyst cells in the 50 mM EGTA group (33.1 cells) was significantly higher (p < 0.05) than that in the 10 mM EDTA group (17.8 cells). Finally, we transferred oocytes from 50 mM EGTA or control groups incubated for 0–60 min into estrous-synchronized recipients. The two recipients of the control oocytes became pregnant and one miscarried two fetuses on day 39.The results suggested that fragmentation of DNA in freeze-dried boar sperm is one of the causes of decreased in vitro developmental ability of injected oocytes to the blastocyst stage. Supplementation with EGTA in a freeze-drying buffer improves this ability.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1653 ◽  
Author(s):  
Aurélia Malapert ◽  
Valérie Tomao ◽  
Marielle Margier ◽  
Marion Nowicki ◽  
Béatrice Gleize ◽  
...  

Alperujo—a two-phase olive mill waste that is composed of olive vegetation water and solid skin, pulp, and seed fragments - is a highly valuable olive by-product due to its high content in phenolic compounds. In this study, we assessed whether β-cyclodextrin (β-CD), which is used to extract and protect alpejuro phenolic compounds (hydroxytyrosol-O-glucoside, tyrosol, caffeic, and p-coumaric acids) could impact on their bioaccessibility (i.e., the percentage of molecule found in the aqueous phase of the digesta) and uptake by intestinal cells, by using an in vitro digestion model and Caco-2 TC7 cells in culture, respectively. Our results showed that β-CD did not change the bioaccessibility of the selected phenols. Hydroxytyrosol-O-glucoside and caffeic did not cross Caco-2 cell monolayers. Conversely ferulic acid, identified as the main caffeic acid intestinal metabolite, was absorbed through intestinal cell monolayers (~20%). Interestingly, β-CD moderately but significantly improved the local absorption of tyrosol and p-coumaric acid (2.3 + 1.4% and 8.5 ± 4.2%, respectively, p < 0.05), even if their final bioavailability (expressed as bioaccessibility × absorption by Caco-2 cells) was not modified (16.2 ± 0.6% vs. 16.8 ± 0.5% for tyrosol and 32.0 ± 3.2% vs. 37.2 ± 3.2% for p-coumaric acid, from pure alperujo and alperujo complexed with β-CD, respectively). Overall, our results show that β-CD is an interesting extraction and storage agent for phenolic compounds that does not alter their in vitro bioavailability.


Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 108 ◽  
Author(s):  
Maria Manconi ◽  
Maria Manca ◽  
Carla Caddeo ◽  
Giorgia Sarais ◽  
Alessandra Palmieri ◽  
...  

Background: The nanoincorporation of the extract of Citrus limon (L.) Osbeck var. pompia into liposomes was aimed at improving its antioxidant and antibacterial effects. Methods: The extract of the rind of Citrus limon (L.) Osbeck var. pompia was obtained by maceration in ethanol, evaporation, and freeze-drying. The extract phytochemical fingerprint was obtained by HPLC and mass spectrometry, and it was determined that gallic acid, neohesperidin, eriocitrin, and neoeriocitrin were the most abundant components. The freeze-dried extract was loaded in liposomes, glycerosomes, and penetration-enhancer-containing vesicles prepared with propylene glycol (PG-PEVs). Results: Capability of the vesicles of improving efficacy of the extract in counteracting oxidative stress was studied in vitro in keratinocytes, along with antimicrobial activity against planktonic cultures of Streptococcus mutans, Lactobacillus acidophilus, and Streptococcus sanguinis. Conclusion: Results showed that the vesicles, especially glycerosomes and PG-PEVs, prevented oxidative damage and cell death, and inhibited bacterial proliferation.


2018 ◽  
Vol 14 (2) ◽  
Author(s):  
Jun Yu ◽  
Zijian Shangguan ◽  
Xingju Yang ◽  
Dan Sun ◽  
Baoqing Zhu ◽  
...  

AbstractDifferent drying methods, including hot air drying (HAD), freeze drying (FD), spray drying and vacuum drying (VD), were investigated to determine their influence on the chromatic coordinates, phenolics, anthocyanins and antioxidant activities of dried red raspberry (Rubus lambertianus). Pelargonidin-3-O-glucoside and catechin were found to be the main anthocyanin and non-anthocyanin phenolics, respectively, in fresh red raspberry. The most effective method for controlling browning was FD. The highest protective effects against bioactive compounds were observed in freeze-dried powders, when measuring the total anthocyanins, the scavenging of DPPH (1,1-diphenyl-2-picrylhydrazyl) and hydroxyl radicals and the inhibition effects on lard oxidation. HAD was effective for the preservation of total phenolics, while VD was useful for protecting catechin and procyanidin B1.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Bryan Gannon ◽  
Raymond Glahn ◽  
Saurabh Mehta

Abstract Objectives A multiple biofortified food crop trial targeting iron, zinc, and vitamin A deficiencies among young children and their breastfeeding mothers is planned in India. We sought to determine iron bioavailability from biofortified and conventional crop mixes representative of planned meal components. Methods A 24-meal menu was developed based on pearl millet, sweet potato, and lentils targeted for a feeding trial. Crops were procured from India, cooked, and freeze-dried before two rounds of an established in vitro digestion/Caco-2 iron bioavailability assay. Samples used a fixed weight adjusted for sweet potato water content. Representative crop proportions were determined using k-means clustering, combined such that samples included either all biofortified or all control crop varieties, and analyzed in triplicate. Outcomes were Caco-2 iron uptake and uptake normalized to iron per sample for fractional bioavailability. Data were analyzed with generalized linear models in SAS accounting for crop proportions and variety. Results Across both experiments, biofortified pearl millet alone demonstrated higher iron uptake than conventional varieties (5.01 ± 1.66 vs. 2.17 ± 0.96 ng ferritin/mg protein, P ≤ 0.036). Addition of sweet potato to pearl millet did not change iron uptake for biofortified varieties (P ≥0.13), but increased control iron uptake for all amounts of sweet potato (P ≤ 0.006), which did not differ from biofortified varieties (P ≥ 0.08). Lentil proportion increased iron uptake (β = 4.6 ± 2.2, P = 0.009), with no effect of variety or a lentil by variety interaction (P ≥ 0.56). The overall effect estimate of biofortified vs. control was (β = 1.79 ± 0.91, P = 0.08). Iron uptake normalized to iron per sample was higher for control crops (P ≤ 0.02), and enhanced by sweet potato, while inhibited by pearl millet (both P < 0.001). Conclusions A Caco-2 assay predicts that biofortified pearl millet alone has greater iron bioavailability than control pearl millet. The addition of sweet potato and lentils increased overall and relative iron bioavailability, while reducing differences between biofortified and control varieties. Matrix effects, processing, and promoters/inhibitors of iron absorption should be considered in addition to total iron concentration when optimizing iron bioavailability. Funding Sources This work was supported by HarvestPlus and the USDA. Supporting Tables, Images and/or Graphs


Sign in / Sign up

Export Citation Format

Share Document