scholarly journals Peripancreatic Adipose Tissue Remodeling and Inflammation during High Fat Intake of Palm Oils or Lard in Rats

Nutrients ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 1134
Author(s):  
Jonas Laget ◽  
Youzan Ferdinand Djohan ◽  
Laura Jeanson ◽  
Karen Muyor ◽  
Eric Badia ◽  
...  

Excessive fat consumption leads to the development of ectopic adipose tissues, affecting the organs they surround. Peripancreatic adipose tissue is implicated in glucose homeostasis regulation and can be impaired in obesity. High palm oil consumption’s effects on health are still debated. We hypothesised that crude and refined palm oil high-fat feeding may have contrasting effects on peripancreatic adipocyte hypertrophy, inflammation and lipid oxidation compound production in obese rats. In Wistar rats, morphological changes, inflammation and isoprostanoid production following oxidative stress were assessed in peripancreatic adipose tissue after 12 weeks of diets enriched in crude or refined palm oil or lard (56% energy from fat in each case) versus a standard chow diet (11% energy from fat). Epididymal white and periaortic brown adipose tissues were also included in the study. A refined palm oil diet disturbed glucose homeostasis and promoted lipid deposition in periaortic locations, as well as adipocyte hypertrophy, macrophage infiltration and isoprostanoid (5-F2c-isoprostane and 7(RS)-ST-Δ8-11-dihomo-isofuran) production in peripancreatic adipose tissue. Crude palm oil induced a lower impact on adipose deposits than its refined form and lard. Our results show that the antioxidant composition of crude palm oil may have a protective effect on ectopic adipose tissues under the condition of excessive fat intake.

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 308 ◽  
Author(s):  
Hyo-Geun Lee ◽  
Yu An Lu ◽  
Xining Li ◽  
Ji-Min Hyun ◽  
Hyun-Soo Kim ◽  
...  

Obesity is a serious metabolic syndrome characterized by high levels of cholesterol, lipids in the blood, and intracellular fat accumulation in adipose tissues. It is known that the suppression of adipogenic protein expression is an effective approach for the treatment of obesity, and regulates fatty acid storage and transportation in adipose tissues. The 60% ethanol extract of Grateloupia elliptica (GEE), a red seaweed from Jeju Island in Korea, was shown to exert anti-adipogenic activity in 3T3-L1 cells and in mice with high-fat diet (HFD)-induced obesity. GEE inhibited intracellular lipid accumulation in 3T3-L1 cells, and significantly reduced expression of adipogenic proteins. In vivo experiments indicated a significant reduction in body weight, as well as white adipose tissue (WAT) weight, including fatty liver, serum triglycerides, total cholesterol, and leptin contents. The expression of the adipogenic proteins, SREBP-1 and PPAR-γ, was significantly decreased by GEE, and the expression of the metabolic regulator protein was increased in WAT. The potential of GEE was shown in WAT, with the downregulation of PPAR-γ and C/EBP-α mRNA; in contrast, in brown adipose tissue (BAT), the thermogenic proteins were increased. Collectively, these research findings suggest the potential of GEE as an effective candidate for the treatment of obesity-related issues via functional foods or pharmaceutical agents.


1988 ◽  
Vol 255 (2) ◽  
pp. R226-R231
Author(s):  
Y. Deshaies ◽  
J. Arnold ◽  
J. Lalonde ◽  
D. Richard

The combined effects of a high-fat-supplemented diet and exercise training on serum lipids as well as on lipoprotein lipase activity in white and brown adipose tissues of the rat were evaluated. Male Wistar rats were fed ad libitum either a stock diet or the stock diet supplemented with food items rich in fat. Half of each dietary group was submitted to daily treadmill running for 35 days. Food intake and final body weight were raised by the high-fat-supplemented diet and lowered by exercise training. Postprandial serum triglycerides were not affected by diet or exercise, whereas the latter decreased total cholesterol in the high-fat group only (14%, P less than 0.01). Total lipoprotein lipase activity in white adipose tissue was elevated (120%, P less than 0.01) by high-fat feeding, and this increase was greatly reduced by concomitant exercise training. In brown adipose tissue, however, the large elevation (104%, P less than 0.01) in enzyme activity brought by the high-fat diet was unaltered by concomitant training. Thus a high-fat-supplemented diet increased lipoprotein lipase activity in both an energy-storing and a heat-producing tissue, and exercise training was able to counteract this effect in white, but not in brown, adipose tissue. These findings support the notion that the regulation of lipoprotein lipase is tissue specific.


2021 ◽  
pp. 1-11
Author(s):  
Lissette Duarte ◽  
Javier Quezada ◽  
Luisa A. Ramirez ◽  
Karla Vasquez ◽  
Juan F. Orellana ◽  
...  

BACKGROUND: Polyphenols intake increases the function of brown adipose tissue (BAT), stimulating energy expenditure (EE). Calafate (Berberis microphylla) is a polyphenol-rich Chilean native fruit. OBJECTIVE: To analyse the effect of a treatment with a Calafate extract in the thermogenic activity of mice adipose tissues. METHODS: Forty adult C57BL/6J male mice were subdivided into four groups (n=10 each): control diet, control+Calafate (extract: 50mg total polyphenols/kg weight), high-fat diet (HF) and HF+Calafate. RESULTS: Calafate prevented the increase in body weight and the decrease EE induced by HF. In BAT, Ucp-1 transcript was influenced by the interaction between diet and Calafate (p<0.01), Pparα showed the same expression pattern as Ucp-1 and both, diet (p<0.01) and Calafate (p<0.05), induced significant effects in Sirt1. In inguinal adipose tissue, Pgc1α, Pparα, Prdm16, Sirt1, and Dio2 transcripts presented a decreased expression caused by HF, that was reversed by Calafate. In BAT, an effect of diet (p<0.05) and an interaction between diet and Calafate (p<0.01) was observed in UCP-1 protein levels. CONCLUSIONS: A treatment with Calafate drives less weight gain in mice fed with HF, and reverses the effects generated by it on the expression of thermogenic and browning markers.


2010 ◽  
Vol 42 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Rachael S. Hageman ◽  
Asja Wagener ◽  
Claudia Hantschel ◽  
Karen L. Svenson ◽  
Gary A. Churchill ◽  
...  

The aim of this study was to characterize the responses of individual tissues to high-fat feeding as a function of mass, fat composition, and transcript abundance. We examined a panel of eight tissues [5 white adipose tissues (WAT), brown adipose tissue (BAT), liver, muscle] obtained from DBA/2J mice on either a standard breeding diet (SBD) or a high-fat diet (HFD). HFD led to weight gain, decreased insulin sensitivity, and tissue-specific responses, including inflammation, in these mice. The dietary fatty acids were partially metabolized and converted in both liver and fat tissues. Saturated fatty acids (SFA) were converted in the liver to monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), and oleic acid (C18:1) was the preferred MUFA for storage of excess energy in all tissues of HFD-fed mice. Transcriptional changes largely reflected the tissue-specific fat deposition. SFA were negatively correlated with genes in the collagen family and processes involving the extracellular matrix. We propose a novel role of the tryptophan hydroxylase 2 (Tph2) gene in adipose tissues of diet-induced obesity. Tissue-specific responses to HFD were identified. Liver steatosis was evident in HFD-fed mice. Gonadal, retroperitoneal and subcutaneous adipose tissue and BAT exhibited severe inflammatory and immune responses. Mesenteric adipose tissue was the most metabolically active adipose tissue. Gluteal adipose tissue had the highest mass gain but was sluggish in its metabolism. In HFD conditions, BAT functioned largely like WAT in its role as a depot for excess energy, whereas WAT played a role in thermogenesis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhuohui Luo ◽  
Jiawen Huang ◽  
Zhiping Li ◽  
Zhiwen Liu ◽  
Linchun Fu ◽  
...  

Cajanolactone A (CLA) is a stilbenoid isolated from Cajanus canjan (L.) Millsp with the potential to prevent postmenopausal obesity. In this study, the effect of CLA on high-fat diet (HFD)-induced obesity in female C57BL/6 mice was investigated. It was found that, treatment with CLA reduced the energy intake and effectively protected the mice from HFD-induced body weight gain, fat accumulation within the adipose tissues and liver, and impairment in energy metabolism. Further investigation revealed that CLA significantly down-regulated the expression of ORX, ORXR2, pMCH, and Gal in the hypothalamus and antagonized HFD-induced changes in the expression of UCP1, Pgc-1α, Tfam, and Mfn1 in the inguinal white adipose tissue (iWAT); Caveolin-1, MT and UCP3 in the perigonadal white adipose tissue (pWAT); and Pdhb, IRS2, Mttp, Hadhb, and Cpt1b in the liver. CLA also protected the pWAT and liver from HFD-induced mitochondrial damage. However, neither HFD nor CLA showed an effect on the mass of brown adipose tissue (BAT) or the expression of UCP1 in the BAT. In summary, our findings suggest that CLA is a potential drug candidate for preventing diet-induced obesity, at least in females. CLA works most likely by suppressing the hypothalamic expression of orexigenic genes, which leads to reduced energy intake, and subsequently, reduced fat accumulation, thereby protecting the adipose tissues and the liver from lipid-induced mitochondrial dysfunction.


2018 ◽  
Vol 19 (9) ◽  
pp. 2654 ◽  
Author(s):  
Saioa Gómez-Zorita ◽  
Jenifer Trepiana ◽  
Alfredo Fernández-Quintela ◽  
Marcela González ◽  
María Portillo

Aquaglyceroporins (AQPs) are transmembrane channels that mediate glycerol release and glycerol uptake. They are involved in fat metabolism, with implications in obesity. The aim was to determine whether the administration of resveratrol and pterostilbene during the six weeks of the experimental period would modify AQPs expression in white and brown adipose tissues from Wistar rats fed an obesogenic diet, and to establish a potential relationship with the delipidating properties of these compounds. Consequently, thirty-six rats were divided into four groups: (a) group fed a standard diet; and three more groups fed a high-fat high-sucrose diet: (b) high-fat high-sucrose group: (c) pterostilbene-treated group (30 mg/kg/d): (d) resveratrol-treated group (30 mg/kg/d). Epididymal, subcutaneous white adipose tissues and interscapular brown adipose tissue were dissected. AQPs gene expression (RT-PCR) and protein expression (western-blot) were measured. In white adipose tissue, pterostilbene reduced subcutaneous adipose tissue weight and prevented the decrease in AQP9 induced by obesogenic feeding, and thus glycerol uptake for triglyceride accumulation. Resveratrol reduced epididymal adipose tissue weight and avoided the decrease in AQPs related to glycerol release induced by high-fat high-sucrose feeding, suggesting the involvement of lipolysis in its body-fat lowering effect. Regarding brown adipose tissue, AQP7 seemed not to be involved in the previously reported thermogenic activity of both phenolic compounds.


2014 ◽  
Vol 222 (2) ◽  
pp. 201-215 ◽  
Author(s):  
Jillian L Rourke ◽  
Shanmugam Muruganandan ◽  
Helen J Dranse ◽  
Nichole M McMullen ◽  
Christopher J Sinal

Chemerin is an adipose-derived signaling protein (adipokine) that regulates adipocyte differentiation and function, immune function, metabolism, and glucose homeostasis through activation of chemokine-like receptor 1 (CMKLR1). A second chemerin receptor, G protein-coupled receptor 1 (GPR1) in mammals, binds chemerin with an affinity similar to CMKLR1; however, the function of GPR1 in mammals is essentially unknown. Herein, we report that expression of murineGpr1mRNA is high in brown adipose tissue and white adipose tissue (WAT) and skeletal muscle. In contrast to chemerin (Rarres2) andCmklr1,Gpr1expression predominates in the non-adipocyte stromal vascular fraction of WAT. Heterozygous and homozygousGpr1-knockout mice fed on a high-fat diet developed more severe glucose intolerance than WT mice despite having no difference in body weight, adiposity, or energy expenditure. Moreover, mice lackingGpr1exhibited reduced glucose-stimulated insulin levels and elevated glucose levels in a pyruvate tolerance test. This study is the first, to our knowledge, to report the effects ofGpr1deficiency on adiposity, energy balance, and glucose homeostasisin vivo. Moreover, these novel results demonstrate that GPR1 is an active chemerin receptor that contributes to the regulation of glucose homeostasis during obesity.


2021 ◽  
Vol 22 (7) ◽  
pp. 3407
Author(s):  
Chung-Ze Wu ◽  
Li-Chien Chang ◽  
Chao-Wen Cheng ◽  
Te-Chao Fang ◽  
Yuh-Feng Lin ◽  
...  

In recent decades, the obesity epidemic has resulted in morbidity and mortality rates increasing globally. In this study, using obese mouse models, we investigated the relationship among urokinase plasminogen activator (uPA), metabolic disorders, glomerular filtration rate, and adipose tissues. Two groups, each comprised of C57BL/6J and BALB/c male mice, were fed a chow diet (CD) and a high fat diet (HFD), respectively. Within the two HFD groups, half of each group were euthanized at 8 weeks (W8) or 16 weeks (W16). Blood, urine and adipose tissues were collected and harvested for evaluation of the effects of obesity. In both mouse models, triglyceride with insulin resistance and body weight increased with duration when fed a HFD in comparison to those in the groups on a CD. In both C57BL/6J and BALB/c HFD mice, levels of serum uPA initially increased significantly in the W8 group, and then the increment decreased in the W16 group. The glomerular filtration rate declined in both HFD groups. The expression of uPA significantly decreased in brown adipose tissue (BAT), but not in white adipose tissue, when compared with that in the CD group. The results suggest a decline in the expression of uPA in BAT in obese m models as the serum uPA increases. There is possibly an association with BAT fibrosis and dysfunction, which may need further study.


2014 ◽  
Vol 221 (3) ◽  
pp. 381-390 ◽  
Author(s):  
Gustavo W Fernandes ◽  
Cintia B Ueta ◽  
Tatiane L Fonseca ◽  
Cecilia H A Gouveia ◽  
Carmen L Lancellotti ◽  
...  

Three types of beta adrenergic receptors (ARβ1–3) mediate the sympathetic activation of brown adipose tissue (BAT), the key thermogenic site for mice which is also present in adult humans. In this study, we evaluated adaptive thermogenesis and metabolic profile of a mouse withArβ2knockout (ARβ2KO). At room temperature, ARβ2KO mice have normal core temperature and, upon acute cold exposure (4 °C for 4 h), ARβ2KO mice accelerate energy expenditure normally and attempt to maintain body temperature. ARβ2KO mice also exhibited normal interscapular BAT thermal profiles during a 30-min infusion of norepinephrine or dobutamine, possibly due to marked elevation of interscapular BAT (iBAT) and ofArβ1, andArβ3mRNA levels. In addition, ARβ2KO mice exhibit similar body weight, adiposity, fasting plasma glucose, cholesterol, and triglycerides when compared with WT controls, but exhibit marked fasting hyperinsulinemia and elevation in hepaticPepck(Pck1) mRNA levels. The animals were fed a high-fat diet (40% fat) for 6 weeks, ARβ2KO mice doubled their caloric intake, accelerated energy expenditure, and inducedUcp1expression in a manner similar to WT controls, exhibiting a similar body weight gain and increase in the size of white adipocytes to the WT controls. However, ARβ2KO mice maintain fasting hyperglycemia as compared with WT controls despite very elevated insulin levels, but similar degrees of liver steatosis and hyperlipidemia. In conclusion, inactivation of the ARβ2KO pathway preserves cold- and diet-induced adaptive thermogenesis but disrupts glucose homeostasis possibly by accelerating hepatic glucose production and insulin secretion. Feeding on a high-fat diet worsens the metabolic imbalance, with significant fasting hyperglycemia but similar liver structure and lipid profile to the WT controls.


1987 ◽  
Vol 253 (2) ◽  
pp. E149-E157
Author(s):  
H. K. Kim ◽  
D. R. Romsos

Adrenalectomy prevents development of obesity in ob/ob mice fed high-carbohydrate stock diets partly by stimulating the low thermogenic capacity of their brown adipose tissue (BAT). Adrenalectomy, however, fails to prevent development of obesity in ob/ob mice fed a high-fat diet. Effects of adrenalectomy on BAT metabolism in ob/ob mice fed a high-fat diet were thus examined. ob/ob mice fed the high-fat diet developed gross obesity despite normal BAT metabolism, as assessed by rates of norepinephrine turnover in BAT, GDP binding to BAT mitochondria, and GDP-inhibitable, chloride-induced mitochondrial swelling. Adrenalectomy failed to arrest the development of obesity or to influence BAT metabolism in ob/ob mice fed the high-fat diet. Development of obesity in ob/ob mice fed a high-fat diet is not associated with low thermogenic capacity of BAT or with adrenal secretions, as it is in ob/ob mice fed high-carbohydrate stock diets.


Sign in / Sign up

Export Citation Format

Share Document