scholarly journals Chrysanthemum morifolium Flower Extract Ameliorates Obesity-Induced Inflammation and Increases the Muscle Mitochondria Content and AMPK/SIRT1 Activities in Obese Rats

Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3660
Author(s):  
Yoonjin Lee ◽  
Jaerin Lee ◽  
Mak-Soon Lee ◽  
Eugene Chang ◽  
Yangha Kim

Decreased energy expenditure and chronically positive energy balance contribute to the prevalence of obesity and associated metabolic dysfunctions, such as dyslipidemia, hepatic fat accumulation, inflammation, and muscle mitochondrial defects. We investigated the effects of Chrysanthemum morifolium Ramat flower extract (CE) on obesity-induced inflammation and muscle mitochondria changes. Sprague–Dawley rats were randomly divided into four groups and fed either a normal diet, 45% high-fat diet (HF), HF containing 0.2% CE, or 0.4% CE for 13 weeks. CE alleviated HF-increased adipose tissue mass and size, dyslipidemia, hepatic fat deposition, and systematic inflammation, and increased energy expenditure. CE significantly decreased gene expression involved in adipogenesis, pro-inflammation, and the M1 macrophage phenotype, as well as glycerol-3-phosphate dehydrogenase (GPDH) and nuclear factor-kappa B (NF-kB) activities in epididymal adipose tissue. Moreover, CE supplementation improved hepatic fat accumulation and modulated gene expression related to fat synthesis and oxidation with an increase in adenosine monophosphate-activated protein kinase (AMPK) activity in the liver. Furthermore, CE increased muscle mitochondrial size, mitochondrial DNA (mtDNA) content, and gene expression related to mitochondrial biogenesis and function, including sirtuin 1 (SIRT1), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), and PGC-1α-target genes, along with AMPK-SIRT1 activities in the skeletal muscle. These results suggest that CE attenuates obesity-associated inflammation by modulating the muscle AMPK-SIRT1 pathway.

Sci ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 13
Author(s):  
Raine Toivonen ◽  
Sanja Vanhatalo ◽  
Maija Hollmén ◽  
Eveliina Munukka ◽  
Anniina Keskitalo ◽  
...  

Toll-like receptor 5 ligand, flagellin, and vascular adhesion protein 1 (VAP-1) are involved in non-alcoholic fatty liver disease. This study aimed to determine whether VAP-1 mediates flagellin-induced hepatic fat accumulation. The effects of flagellin on adipocyte VAP-1 expression were first studied in vitro. Then, flagellin (100 ng/mouse) or saline was intraperitoneally injected into C57BL/6J (WT) and C57BL/6-Aoc3-/- (VAP-1 KO) mice on a high-fat diet twice a week every 2 weeks for 10 weeks. After that, the effects on inflammation, insulin signaling, and metabolism were studied in liver and adipose tissues. Hepatic fat was quantified histologically and biochemically. Because flagellin challenge increased VAP-1 expression in human adipocytes, we used VAP-1 KO mice to determine whether VAP-1 regulates the inflammatory and metabolic effects of flagellin in vivo. In mice, VAP-1 mediated flagellin-induced inflammation, leukocyte infiltration, and lipolysis in visceral adipose tissue. Consequently, an increased release of glycerol led to hepatic steatosis in WT, but not in KO mice. Flagellin-induced hepatic fibrosis was not mediated by VAP-1. VAP-1 KO mice harbored more inflammation-related microbes than WT mice, while flagellin did not affect the gut microbiota. Our results suggest that by acting on visceral adipose tissue, flagellin increased leukocyte infiltration that induced lipolysis. Further, the released glycerol participated in hepatic fat accumulation. In conclusion, the results describe that gut microbial flagellin through VAP-1 induced hepatic steatosis.


Nutrients ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 1102 ◽  
Author(s):  
Albert Gibert-Ramos ◽  
Anna Crescenti ◽  
M. Salvadó

The aim of this study was to determine whether the consumption of cherry out of its normal harvest photoperiod affects adipose tissue, increasing the risk of obesity. Fischer 344 rats were held over a long day (LD) or a short day (SD), fed a standard diet (STD), and treated with a cherry lyophilizate (CH) or vehicle (VH) (n = 6). Biometric measurements, serum parameters, gene expression in white (RWAT) and brown (BAT) adipose tissues, and RWAT histology were analysed. A second experiment with similar conditions was performed (n = 10) but with a cafeteria diet (CAF). In the STD experiment, Bmal1 and Cry1 were downregulated in the CHSD group compared to the VHSD group. Pparα expression was downregulated while Ucp1 levels were higher in the BAT of the CHSD group compared to the VHSD group. In the CAF-fed rats, glucose and insulin serum levels increased, and the expression levels of lipogenesis and lipolysis genes in RWAT were downregulated, while the adipocyte area increased and the number of adipocytes diminished in the CHSD group compared to the VHSD group. In conclusion, we show that the consumption of cherry out of season influences the metabolism of adipose tissue and promotes fat accumulation when accompanied by an obesogenic diet.


Author(s):  
Eric A. Wilson ◽  
Hui Sun ◽  
Zhenzhong Cui ◽  
Marshal T. Jahnke ◽  
Mritunjay Pandey ◽  
...  

The G protein subunits Gqα and G11α (Gq/11α) couple receptors to phospholipase C, leading to increased intracellular calcium. In this study we investigated the consequences of Gq/11α deficiency in the dorsomedial hypothalamus (DMH), a critical site for the control of energy homeostasis. Mice with DMH-specific deletion of Gq/11α (DMHGq/11KO) were generated by stereotaxic injection of AAV-Cre-GFP into the DMH of Gqαflox/flox:G11α-/- mice. Compared to control mice that received DMH injection of AAV-GFP, DMHGq/11KO mice developed obesity associated with reduced energy expenditure without significant changes in food intake or physical activity. DMHGq/11KO mice showed no defects in the ability of the melanocortin agonist melanotan II to acutely stimulate energy expenditure or to inhibit food intake. At room temperature (22oC) DMHGq/11KO mice showed reduced sympathetic nervous system activity in brown adipose tissue (BAT) and heart, accompanied with decreased basal BAT Ucp1 gene expression and lower heart rates. These mice were cold intolerant when acutely exposed to cold (6oC for 5 hours) and had decreased cold-stimulated BAT Ucp1 gene expression. DMHGq/11KO mice also failed to adapt to gradually declining ambient temperatures and to develop adipocyte browning in inguinal white adipose tissue although their BAT Ucp1 was proportionally stimulated. Consistent with impaired cold-induced thermogenesis, the onset of obesity in DMHGq/11KO mice was significantly delayed when housed under thermoneutral conditions (30ºC). Thus, our results show that Gqα and G11α in the DMH are required for the control of energy homeostasis by stimulating energy expenditure and thermoregulation.


2005 ◽  
Vol 21 (3) ◽  
pp. 343-350 ◽  
Author(s):  
Daisuke Hishikawa ◽  
Yeon-Hee Hong ◽  
Sang-gun Roh ◽  
Hisae Miyahara ◽  
Yukihiko Nishimura ◽  
...  

The factors that control fat deposition in adipose tissues are poorly understood. It is known that visceral adipose tissues display a range of biochemical properties that distinguish them from adipose tissues of subcutaneous origin. However, we have little information on gene expression, either in relation to fat deposition or on interspecies variation in fat deposition. The first step in this study was to identify genes expressed in fat depot of cattle using the differential display RT-PCR method. Among the transcripts identified as having differential expression in the two adipose tissues were cell division cycle 42 homolog (CDC42), prefoldin-5, decorin, phosphate carrier, 12S ribosomal RNA gene, and kelch repeat and BTB domain containing 2 (Kbtbd2). In subsequent experiments, we determined the expression levels of these latter genes in the pig and in mice fed either a control or high-fat diet to compare the regulation of fat accumulation in other animal species. The levels of CDC42 and decorin mRNA were found to be higher in visceral adipose tissue than in subcutaneous adipose tissue in cattle, pig, and mice. However, the other genes studied did not show consistent expression patterns between the two tissues in cattle, pigs, and mice. Interestingly, all genes were upregulated in subcutaneous and/or visceral adipose tissues of mice fed the high-fat diet compared with the control diet. The data presented here extend our understanding of gene expression in fat depots and provide further proof that the mechanisms of fat accumulation differ significantly between animal species.


Author(s):  
Pragyanshu Khare ◽  
Aakriti Chauhan ◽  
Vibhu Kumar ◽  
Jasleen Kaur ◽  
Neha Mahajan ◽  
...  

Recent evidences support a role of menthol, a TRPM8 agonist, in enhanced energy expenditure, thermogenesis and BAT-like activity in classical WAT depots in TRPM8 dependent and independent manner. The present study was designed to analyze whether oral and topical administration of menthol is bioavailable at subcutaneous adipose tissue and is sufficient to induce desired energy expenditure effects directly. GC-FID was performed to study menthol bioavailability in serum and subcutaneous white adipose tissue following oral and topical administration. Further, 3T3L1 adipocytes were treated with bioavailable menthol doses and different parameters (lipid accumulation, “browning/brite” and energy expenditure gene expression, metal analysis, mitochondrial complex’s gene expression) were studied. No difference was observed in serum levels but significant difference was seen in the menthol concentration on subcutaneous adipose tissues after oral and topical application. Menthol administration at bioavailable doses significantly increased “browning/brite” and energy expenditure phenotype, enhanced mitochondrial activity related gene expression, increased metal concentration but didn’t alter the lipid accumulation. Further, we used pharmacological antagonism based approach to study the TRPM8 involvement in menthol effect. In conclusion, the present study provides an evidence that bioavailable menthol after single oral and topical administration is sufficient to induce “brite” phenotype in subcutaneous adipose tissue.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 383 ◽  
Author(s):  
Pragyanshu Khare ◽  
Aakriti Chauhan ◽  
Vibhu Kumar ◽  
Jasleen Kaur ◽  
Neha Mahajan ◽  
...  

Recent evidence supports the role of menthol, a TRPM8 agonist, in enhanced energy expenditure, thermogenesis and BAT-like activity in classical WAT depots in a TRPM8 dependent and independent manner. The present study was designed to analyse whether oral and topical administration of menthol is bioavailable at subcutaneous adipose tissue and is sufficient to directlyinduce desired energy expenditure effects. GC-FID was performed to study menthol bioavailability in serum and subcutaneous white adipose tissue following oral and topical administration. Further, 3T3L1 adipocytes were treated with bioavailable menthol doses and different parameters (lipid accumulation, “browning/brite” and energy expenditure gene expression, metal analysis, mitochondrial complex’s gene expression) were studied. No difference was observed in serum levels but significant difference was seen in the menthol concentration on subcutaneous adipose tissues after oral and topical application. Menthol administration at bioavailable doses significantly increased “browning/brite” and energy expenditure phenotype, enhanced mitochondrial activity related gene expression, increased metal concentration during adipogenesis but did not alter the lipid accumulation as well as acute experiments were performed with lower dose of menthol on mature adipocytes In conclusion, the present study provides evidence that bioavailable menthol after single oral and topical administration is sufficient to induce “brite” phenotype in subcutaneous adipose tissue However, critical dose characterization for its clinical utility is required.


2017 ◽  
Vol 313 (1) ◽  
pp. E1-E11 ◽  
Author(s):  
Kanishka N. Nilaweera ◽  
Raul Cabrera-Rubio ◽  
John R. Speakman ◽  
Paula M. O’Connor ◽  
AnneMarie McAuliffe ◽  
...  

We tested the hypothesis that dietary whey protein isolate (WPI) affects the intestinal mechanisms related to energy absorption and that the resulting energy deficit is compensated by changes in energy balance to support growth. C57BL/6 mice were provided a diet enriched with WPI with varied sucrose content, and the impact on energy balance-related parameters was investigated. As part of a high-sucrose diet, WPI reduced the hypothalamic expression of pro-opiomelanocortin gene expression and increased energy intake. The energy expenditure was unaffected, but epididymal weight was reduced, indicating an energy loss. Notably, there was a reduction in the ileum gene expression for amino acid transporter SLC6a19, glucose transporter 2, and fatty acid transporter 4. The composition of the gut microbiota also changed, where Firmicutes were reduced. The above changes indicated reduced energy absorption through the intestine. We propose that this mobilized energy in the adipose tissue and caused hypothalamic changes that increased energy intake, acting to counteract the energy deficit arising in the intestine. Lowering the sucrose content in the WPI diet increased energy expenditure. This further reduced epididymal weight and plasma leptin, whereupon hypothalamic ghrelin gene expression and the intestinal weight were both increased. These data suggest that when the intestine-adipose-hypothalamic pathway is subjected to an additional energy loss (now in the adipose tissue), compensatory changes attempt to assimilate more energy. Notably, WPI and sucrose content interact to enable the component mechanisms of this pathway.


Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3251
Author(s):  
Albert Gibert-Ramos ◽  
Miguel Z. Martín-González ◽  
Anna Crescenti ◽  
M. Josepa Salvadó

Scientists are focusing on bioactive ingredients to counteract obesity. We evaluated whether a mix containing grape seed proanthocyanidin extract (GSPE), anthocyanins, conjugated linoleic acid (CLA), and chicken feet hydrolysate (CFH) could reduce body fat mass and also determined which mechanisms in the white adipose tissue (WAT) and the brown adipose tissue (BAT) were affected by the treatment. The mix or vehicle (VH) were administered for three weeks to obese rats fed a cafeteria (CAF) diet. Biometric measures, indirect calorimetry, and gene expression in WAT and BAT were analyzed as was the histology of the inguinal WAT (IWAT). The individual compounds were also tested in the 3T3-L1 cell line. The mix treatment resulted in a significant 15% reduction in fat (25.01 ± 0.91 g) compared to VH treatment (21.19 ± 1.59 g), and the calorimetry results indicated a significant increase in energy expenditure and fat oxidation. We observed a significant downregulation of Fasn mRNA and an upregulation of Atgl and Hsl mRNA in adipose depots in the group treated with the mix. The IWAT showed a tendency of reduction in the number of adipocytes, although no differences in the total adipocyte area were found. GSPE and anthocyanins modulated the lipid content and downregulated the gene and protein levels of Fasn compared to the untreated group in 3T3-L1 cells. In conclusion, this mix is a promising treatment against obesity, reducing the WAT of obese rats fed a CAF diet, increasing energy expenditure and fat oxidation, and modifying the expression of genes involved in lipid metabolism of the adipose tissue.


2016 ◽  
Vol 40 (6) ◽  
pp. 955-963 ◽  
Author(s):  
M Sahuri-Arisoylu ◽  
L P Brody ◽  
J R Parkinson ◽  
H Parkes ◽  
N Navaratnam ◽  
...  

2009 ◽  
Vol 86 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Agnès Hartemann-Heurtier ◽  
Marine Halbron ◽  
Jean-Louis Golmard ◽  
Sophie Jacqueminet ◽  
Jean-Philippe Bastard ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document