scholarly journals When Cells Suffocate: Autophagy in Cancer and Immune Cells under Low Oxygen

2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Katrin Schlie ◽  
Jaeline E. Spowart ◽  
Luke R. K. Hughson ◽  
Katelin N. Townsend ◽  
Julian J. Lum

Hypoxia is a signature feature of growing tumors. This cellular state creates an inhospitable condition that impedes the growth and function of all cells within the immediate and surrounding tumor microenvironment. To adapt to hypoxia, cells activate autophagy and undergo a metabolic shift increasing the cellular dependency on anaerobic metabolism. Autophagy upregulation in cancer cells liberates nutrients, decreases the buildup of reactive oxygen species, and aids in the clearance of misfolded proteins. Together, these features impart a survival advantage for cancer cells in the tumor microenvironment. This observation has led to intense research efforts focused on developing autophagy-modulating drugs for cancer patient treatment. However, other cells that infiltrate the tumor environment such as immune cells also encounter hypoxia likely resulting in hypoxia-induced autophagy. In light of the fact that autophagy is crucial for immune cell proliferation as well as their effector functions such as antigen presentation and T cell-mediated killing of tumor cells, anticancer treatment strategies based on autophagy modulation will need to consider the impact of autophagy on the immune system.

Author(s):  
Dominic G. Roy ◽  
Irem Kaymak ◽  
Kelsey S. Williams ◽  
Eric H. Ma ◽  
Russell G. Jones

Advances in immunotherapy have underscored the importance of antitumor immune responses in controlling cancer. However, the tumor microenvironment (TME) imposes several obstacles to the proper function of immune cells, including a metabolically challenging and immunosuppressive microenvironment. The increased metabolic activity of tumor cells can lead to the depletion of key nutrients required by immune cells and the accumulation of byproducts that hamper antitumor immunity. Furthermore, the presence of suppressive immune cells, such as regulatory T cells and myeloid-derived suppressor cells, and the expression of immune inhibitory receptors can negatively impact immune cell metabolism and function. This review summarizes the metabolic reprogramming that is characteristic of various immune cell subsets, discusses how the metabolism and function of immune cells is shaped by the TME, and highlights how therapeutic interventions aimed at improving the metabolic fitness of immune cells and alleviating the metabolic constraints in the TME can boost antitumor immunity. Expected final online publication date for the Annual Review of Cancer Biology, Volume 5 is March 4, 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Iris Lodewijk ◽  
Sandra P. Nunes ◽  
Rui Henrique ◽  
Carmen Jerónimo ◽  
Marta Dueñas ◽  
...  

Abstract Background Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, including lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epigenetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict response to immune checkpoint blockage. Main body Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which could be beneficial for the clinical response to immunotherapy. Conclusion Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selection of patients eligible to immunotherapy.


Cells ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 831
Author(s):  
Teresa Ho ◽  
Rasha Msallam

Immunosuppression in cancer has emerged as a major hurdle to immunotherapy efforts. Immunosuppression can arise from oncogene-induced signaling within the tumor as well as from tumor-associated immune cells. Understanding various mechanisms by which the tumor can undermine and evade therapy is critical in improving current cancer immunotherapies. While mouse models have allowed for the characterization of key immune cell types and their role in tumor development, extrapolating these mechanisms to patients has been challenging. There is need for better models to unravel the effects of genetic alterations inherent in tumor cells and immune cells isolated from tumors on tumor growth and to investigate the feasibility of immunotherapy. Three-dimensional (3D) organoid model systems have developed rapidly over the past few years and allow for incorporation of components of the tumor microenvironment such as immune cells and the stroma. This bears great promise for derivation of patient-specific models in a dish for understanding and determining the impact on personalized immunotherapy. In this review, we will highlight the significance of current experimental models employed in the study of tumor immunosuppression and evaluate current tumor organoid-immune cell co-culture systems and their potential impact in shedding light on cancer immunosuppression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xin Luo ◽  
Jing Xu ◽  
Jianhua Yu ◽  
Ping Yi

Reciprocal signaling between immune cells and ovarian cancer cells in the tumor microenvironment can alter immune responses and regulate disease progression. These signaling events are regulated by multiple factors, including genetic and epigenetic alterations in both the ovarian cancer cells and immune cells, as well as cytokine pathways. Multiple immune cell types are recruited to the ovarian cancer tumor microenvironment, and new insights about the complexity of their interactions have emerged in recent years. The growing understanding of immune cell function in the ovarian cancer tumor microenvironment has important implications for biomarker discovery and therapeutic development. This review aims to describe the factors that shape the phenotypes of immune cells in the tumor microenvironment of ovarian cancer and how these changes impact disease progression and therapy.


2015 ◽  
Vol 309 (9) ◽  
pp. C580-C589 ◽  
Author(s):  
Jin-Hui Tao ◽  
Joseph Barbi ◽  
Fan Pan

Low oxygen concentrations or hypoxia is a trait common to inflamed tissues. Therefore it is not surprising that pathways of hypoxic stress response, largely governed by hypoxia-inducible factors (HIF), are highly relevant to the proper function of immune cells. HIF expression and stabilization in immune cells can be triggered not only by hypoxia, but also by a variety of stimuli and pathological stresses associated with leukocyte activation and inflammation. In addition to its role as a sensor of oxygen scarcity, HIF is also a major regulator of immune cell metabolic function. Rapid progress is being made in elucidating the roles played by HIF in diverse aspects of both innate and adaptive immunity. Here we discuss a number of breakthroughs that have shed light on how HIF expression and activity impact the differentiation and function of diverse T cell populations. The insights gained from these findings may serve as the foundation for future therapies aimed at fine-tuning the immune response.


2020 ◽  
Author(s):  
BI Reinfeld ◽  
MZ Madden ◽  
MM Wolf ◽  
A Chytil ◽  
JE Bader ◽  
...  

The tumor microenvironment (TME) includes transformed cancer and infiltrating immune cells1,2. Cancer cells can consume large quantities of glucose through Warburg metabolism3,4 that can be visualized with positron emission tomography (PET). While infiltrating immune cells also rely on glucose, disruptions to metabolism can contribute to tumor immunological evasion5–9. How immune cell metabolism is programmed or restrained by competition with cancer cells for nutrients, remains uncertain. Here we used PET tracers to measure the accessibility of glucose and glutamine to cell subsets in the TME. Surprisingly, myeloid cells including macrophages were the greatest consumers of intra-tumoral glucose, followed by T cells and cancer cells. Cancer cells, in contrast, had the highest glutamine uptake. This distinct nutrient partitioning was programmed through selective mTORC1 signaling and glucose or glutamine-related gene expression. Inhibition of glutamine uptake enhanced glucose uptake across tumor resident cell types and shifted macrophage phenotype, demonstrating glucose is not limiting in the TME. Thus, cancer cells are not the only cells in tumors which exhibit high glucose uptake in vivo and instead preferentially utilize glutamine over other cell types. We observe that intrinsic cellular programs can play a major role in the use of some nutrients. Together, these data argue cell selective partitioning of glucose and glutamine can be exploited to develop therapies and imaging strategies to alter the metabolic programs of specific cell populations in the TME.


2021 ◽  
Author(s):  
Bo Qian ◽  
Jing Sun ◽  
Pengcheng Zuo ◽  
Min Da ◽  
Xuming Mo ◽  
...  

Abstract Background: The tumor microenvironment (TME) has achieved remarkable results in the research of cancer progression in the past few years. it is crucial to understand the nature and function of TME in tumors because of precise treatment strategies for individual cancers having received widespread attention, including immunotherapy. The immune infiltrative profiles of neuroblastoma (NB) have not yet been completely illustrated. The purpose of this research is to analyses tumor immune cell infiltration (ICI) in the microenvironment of NB.Methods: We applied CIBERSORT and ESTIMATE algorithms to evaluate the ICI status of 438 NB samples. Three ICI models were selected and ICI scores were acquired. Subgroups with high ICI scores based on immune activation signaling pathways have better overall survival. Results: The genes of immunosuppressive glycosaminoglycan biosynthesis heparan sulfate signaling pathway were markedly enriched in the low ICI score subgroup. It was inferred that compared with low ICI NB subtypes, patients with high ICI NB subtypes were more likely to respond to immunotherapy and a better prognosis. Conclusion: Notably, our ICI scores not only provided new clinical and theoretical basis for mining NB prognostic markers related to the microenvironment, but also aided new ideas for the development of new NB precision immunotherapy methods.


2019 ◽  
Vol 21 (1) ◽  
pp. 157 ◽  
Author(s):  
Shamir Cassim ◽  
Jacques Pouyssegur

Immune cells survey and patrol throughout the body and sometimes take residence in niche environments with distinct cellular subtypes and nutrients that may fluctuate from those in which they matured. Rooted in immune cell physiology are metabolic pathways and metabolites that not only deliver substrates and energy for growth and survival, but also instruct effector functions and cell differentiation. Unlike cancer cells, immune cells are not subject to a “Darwinian evolutionary pressure” that would allow them to adapt to developing tumors but are often irrevocably affected to local nutrient deprivation. Thus, immune cells must metabolically adapt to these changing conditions in order to perform their necessary functions. On the other hand, there is now a growing appreciation that metabolic changes occurring in cancer cells can impact on immune cell functionality and contribute to tumor immune evasion, and as such, there is a considerable and growing interest in developing techniques that target metabolism for immunotherapy. In this review, we discuss the metabolic plasticity displayed by innate and adaptive immune cells and highlight how tumor-derived lactate and tumor acidity restrict immunity. To our knowledge, this review outlines the most recent insights on how tumor microenvironment metabolically instructs immune responsiveness.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fabrizio Mattei ◽  
Sara Andreone ◽  
Arianna Mencattini ◽  
Adele De Ninno ◽  
Luca Businaro ◽  
...  

Oncoimmunology represents a biomedical research discipline coined to study the roles of immune system in cancer progression with the aim of discovering novel strategies to arm it against the malignancy. Infiltration of immune cells within the tumor microenvironment is an early event that results in the establishment of a dynamic cross-talk. Here, immune cells sense antigenic cues to mount a specific anti-tumor response while cancer cells emanate inhibitory signals to dampen it. Animals models have led to giant steps in this research context, and several tools to investigate the effect of immune infiltration in the tumor microenvironment are currently available. However, the use of animals represents a challenge due to ethical issues and long duration of experiments. Organs-on-chip are innovative tools not only to study how cells derived from different organs interact with each other, but also to investigate on the crosstalk between immune cells and different types of cancer cells. In this review, we describe the state-of-the-art of microfluidics and the impact of OOC in the field of oncoimmunology underlining the importance of this system in the advancements on the complexity of tumor microenvironment.


Cancers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 986
Author(s):  
Nada S. Aboelella ◽  
Caitlin Brandle ◽  
Timothy Kim ◽  
Zhi-Chun Ding ◽  
Gang Zhou

It has been well-established that cancer cells are under constant oxidative stress, as reflected by elevated basal level of reactive oxygen species (ROS), due to increased metabolism driven by aberrant cell growth. Cancer cells can adapt to maintain redox homeostasis through a variety of mechanisms. The prevalent perception about ROS is that they are one of the key drivers promoting tumor initiation, progression, metastasis, and drug resistance. Based on this notion, numerous antioxidants that aim to mitigate tumor oxidative stress have been tested for cancer prevention or treatment, although the effectiveness of this strategy has yet to be established. In recent years, it has been increasingly appreciated that ROS have a complex, multifaceted role in the tumor microenvironment (TME), and that tumor redox can be targeted to amplify oxidative stress inside the tumor to cause tumor destruction. Accumulating evidence indicates that cancer immunotherapies can alter tumor redox to intensify tumor oxidative stress, resulting in ROS-dependent tumor rejection. Herein we review the recent progresses regarding the impact of ROS on cancer cells and various immune cells in the TME, and discuss the emerging ROS-modulating strategies that can be used in combination with cancer immunotherapies to achieve enhanced antitumor effects.


Sign in / Sign up

Export Citation Format

Share Document