scholarly journals Effects of Local and Systemic Immune Challenges on the Expression of Selected Salivary Genes in the Malaria Mosquito Anopheles coluzzii

Pathogens ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1300
Author(s):  
Giulia Bevivino ◽  
Bruno Arcà ◽  
Fabrizio Lombardo

Salivary glands play a crucial tripartite role in mosquito physiology. First, they secrete factors that greatly facilitate both sugar and blood meal acquisition. Second, the transmission of pathogens (parasites, bacteria and viruses) to the vertebrate host requires both the recognition and invasion of the salivary glands. Third, they produce immune factors that both protect the organ from invading pathogens and are also able to exert their activity in the crop and the midgut when saliva is re-ingested during feeding. Studies on mosquito sialomes have revealed the presence of several female and/or male salivary gland-specific or enriched genes whose function is completely unknown so far. We focused our attention on these orphan genes, and we selected, according to sequence and structural features, a shortlist of 11 candidates with potential antimicrobial properties. Afterwards, using qPCR, we investigated their expression profile at 5 and 24 h after an infectious sugar meal (local challenge) or thoracic microinjection (systemic challenge) of Gram-negative (Escherichia coli, EC) or Gram-positive (Staphylococcus aureus, SA) bacteria. We observed a general increase in the transcript abundance of our salivary candidates between 5 and 24 h after local challenge. Moreover, transcriptional modulation was determined by the nature of the stimulus, with salivary gland-enriched genes (especially hyp15 upon SA stimulus) upregulated shortly after the local challenge and later after the systemic challenge. Overall, this work provides one of the first contributions to the understanding of the immune role of mosquito salivary glands. Further characterization of salivary candidates whose expression is modulated by immune challenge may help in the identification of possible novel antimicrobial peptides.

1997 ◽  
Vol 200 (14) ◽  
pp. 1941-1949 ◽  
Author(s):  
D Ali

Insect salivary glands are glands associated with nutrient intake whose secretions are generally involved in the digestion and lubrication of food. They are under the control of neuroactive substances and may be innervated from several sources including the suboesophageal ganglion, the stomatogastric nervous system and the unpaired median nerves. Both amines and peptides have been suggested to play roles in the control of insect salivation, as indicated by their association with terminals on salivary glands, their effects in salivary gland bioassays and their ability to alter second messenger levels and ion channel conformations. Serotonin and dopamine appear to be the most prominent amines associated with insect salivary glands. Either one or both of these amines are found associated with the salivary glands of the locust, stick insect, cockroach, cricket, dragonfly, mosquito, adult moth and kissing bug. Their roles, although not fully elucidated, appear to be in the control of salivary secretion. Several peptides, including members of the FMRFamide-related family of peptides, are also found associated with insect salivary glands. Sources of peptidergic innervation are as varied as those for aminergic innervation, but information regarding the physiological role of these peptides is lacking. The relevance of the different levels of complexity of salivary gland innervation, which range from the absence of innervation in some species (blowfly) to the presence of several distinct sources in others (locust, cockroach), is not well understood. This review serves to consolidate what is known of the phenotype of salivary neurones in relation to the control of salivation.


2016 ◽  
Vol 18 (6) ◽  
pp. 708-712 ◽  
Author(s):  
Berje Shammassian ◽  
Sunil Manjila ◽  
Efrem Cox ◽  
Kaine Onwuzulike ◽  
Dehua Wang ◽  
...  

Intracranial ectopic salivary gland rests within dural-based lesions are reported very infrequently in the literature. The authors report the unique case of a 12-year-old boy with a cerebellar medulloblastoma positive for sonic hedgehog (Shh) that contained intraaxial mature ectopic salivary gland rests. The patient underwent clinical and radiological monitoring postoperatively, until he died of disseminated disease. An autopsy showed no evidence of salivary glands within disseminated lesions. The intraaxial presence of salivary gland rests and concomitant Shh positivity of the described tumor point to a disorder in differentiation as opposed to ectopic developmental foci, which are uniformly dural based in the described literature. The authors demonstrate the characteristic “papilionaceous” appearance of the salivary glands with mucicarmine stain and highlight the role of Shh signaling in explaining the intraaxial presence of seromucous gland analogs. This article reports the first intraaxial posterior fossa tumor with heterotopic salivary gland rests, and it provides molecular and embryopathological insights into the development of these lesions.


Author(s):  
D. Rittschof ◽  
C.M. Kratt ◽  
A.S. Clare

Gastropod shells are essential to most hermit crabs. Shell availability limits hermit crab populations. Shells provide protection and the degree of shell-fit controls crab growth and fecundity. Crabs locate new gastropod shells from a distance under water by molecules released from gastropod flesh during predation events. Here we test the hypothesis that the salivary glands of the predatory gastropod are the source of enzymes that digest muscle proteins and release peptide attractants. We describe the anatomy of both the acinous salivary glands and the tubular accessory salivary glands of Busycon contrarium which are similar to those of B. carica. The salivary gland ducts empty at the mouth, suggesting a role in the primary digestion of food. We show that gastropod muscle proteins, extracted by salt solutions with the ionic strength of sea water and purified by precipitation in low ionic strength can be digested by gastropod salivary gland enzymes to generate peptides attractive to the hermit crab, Clibanarius vittatus, in field assays.


2020 ◽  
Author(s):  
Robyn Roberts ◽  
Alexander E. Liu ◽  
Lingwei Wan ◽  
Annie M. Geiger ◽  
Sarah R. Hind ◽  
...  

AbstractPlants mount defense responses by recognizing indications of pathogen invasion, including microbe-associated molecular patterns (MAMPs). Flagellin from the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) contains two MAMPs, flg22 and flgII-28, that are recognized by tomato receptors Flagellin sensing 2 (Fls2) and Flagellin sensing 3 (Fls3), respectively. It is unknown to what degree each receptor contributes to immunity and if they promote immune responses using the same molecular mechanisms. Characterization of CRISPR/Cas9-generated Fls2 and Fls3 tomato mutants revealed that the two receptors contribute equally to disease resistance both on the leaf surface and in the apoplast. However, striking differences were observed in certain host responses mediated by the two receptors. Compared to Fls2, Fls3 mediated a more sustained production of reactive oxygen species (ROS) and an increase in transcript abundance of 44 tomato genes, with two genes serving as reporters for Fls3. Fls3 had greater in vitro kinase activity and interacted differently with the Pst effector AvrPtoB as compared to Fls2. Using chimeric Fls2/Fls3 proteins, we found that no receptor domain was solely responsible for the Fls3 sustained ROS, suggesting involvement of multiple structural features. This work reveals differences in the immunity outputs between Fls2 and Fls3, suggesting they use distinct molecular mechanisms to activate pattern-triggered immunity in response to flagellin-derived MAMPs.


1998 ◽  
Vol 180 (2) ◽  
pp. 426-429 ◽  
Author(s):  
Elaine Allan ◽  
Peter Mullany ◽  
Soad Tabaqchali

ABSTRACT Antiserum raised against whole Helicobacter pyloricells identified a novel 94-kDa antigen. The nucleotide sequence of the gene encoding the 94-kDa antigen was determined, and analysis of the deduced amino acid sequence revealed structural features typical of the ClpB ATPase family of stress response proteins. An isogenic H. pylori clpB mutant showed increased sensitivity to high-temperature stress, indicating that the clpB gene product functions as a stress response protein in H. pylori.


2019 ◽  
Vol 24 (1) ◽  
pp. 106
Author(s):  
Ningxin Li ◽  
Sisi Li ◽  
Duo Wang ◽  
Peng Yan ◽  
Wenying Wang ◽  
...  

The tick Dermacentor everestianus is widely distributed on the Tibetan Plateau of China, where adult ticks usually parasitize sheep, yaks and horses. D. everestianus is able to transmit many zoonotic pathogens, including Francisella tularensis, Anaplasma ovis and Rickettsia raoultii-like bacteria, and can cause great damage to animals and human health. However, the symbionts in D. everestianus have not yet been investigated, which has hindered our understanding of the relationships between this tick species and associated tick-borne pathogens. In the current study, the Rickettsia-like and Coxiella-like symbionts in D. everestianus were identified and characterized. The results indicated that both Rickettsia-like (RLS-Des) and Coxiella-like (CLS-Des) symbionts showed 100% infection rates and displayed vertical transmission in D. everestianus. The RLS-Des showed a relatively higher abundance than the CLS-Des in D. everestianus. No tissue specificity was found for the RLS-Des or CLS-Des. These symbionts can inhabit the ovaries, salivary glands, midguts, Malpighian tubules and testes of D. everestianus. During the development of D. everestianus, the density of the RLS-Des showed more obvious changes than did that of the CLS-Des. Dramatic changes in the density of the RLS-Des were detected in the midguts, ovaries, salivary glands and Malpighian tubules when female D. everestianus were engorged and detached from the host, which suggested the potential role of these symbionts in the reproduction and development of D. everestianus. The dynamic changes in the density of the CLS-Des during feeding and reproduction of D. everestianus suggest the involvement of the CLS-Des in the reproduction of D. everestianus. 


2002 ◽  
Vol 70 (9) ◽  
pp. 4772-4776 ◽  
Author(s):  
Guadalupe Cortés ◽  
Beatriz de Astorza ◽  
Vicente J. Benedí ◽  
Sebastián Albertí

ABSTRACT We recently described the use of mini-Tn5 to generate complement-sensitive mutants derived from a complement-resistant Klebsiella pneumoniae clinical isolate deficient in the lipopolysaccharide O side chain. One mutant with a reduced capacity to survive in nonimmune human sera carried the transposon inserted in the htrA gene. We cloned and sequenced the gene and predicted from the deduced amino acid sequence that the putative HtrA homolog contains structural features similar to those of previously described HtrA proteins. To investigate the biological functions and the role of the htrA gene in the virulence of K. pneumoniae, we constructed an isogenic mutant by insertion-duplication mutagenesis. Characterization of the mutant showed that it had greater sensitivity to temperature (50°C) and oxidative stress (H2O2) than the parent strain. Furthermore, the htrA mutant produced less capsule, bound more molecules of complement component C3, and was more sensitive to complement and whole-blood killing than was the parent strain. Finally, disruption of the htrA gene in a virulent K. pneumoniae strain caused a reduction of its virulence in a mice model. Our results indicate that the htrA gene plays an important role in the virulence of K. pneumoniae.


1994 ◽  
Vol 266 (2) ◽  
pp. C467-C479 ◽  
Author(s):  
M. E. Chertoff ◽  
W. E. Brownell

The cochlear outer hair cell (OHC) is a cylindrical cell with structural features suggestive of a hydraulic skeleton, i.e., an elastic shell with a positive internal pressure. This study characterizes the role of the OHC elevated cytoplasmic pressure in maintaining the cell shape. Intracellular pressure of OHCs from guinea pig is estimated by measuring changes in cell morphology in response to increasing or decreasing osmolarity. Cells collapse when subjected to a continuous increase in osmolarity. Collapse occurs at an average of 8 mosM above the standard medium, suggesting that normal cells have an effective intracellular pressure of 128 mmHg. Fewer cells collapse when exposed to slow rates of osmolarity increase than cells exposed to fast rates of osmolarity increase, although the final change in osmolarity in the perfusion chamber is similar. Furthermore, cells undergo a slow, spontaneous increase in volume on exposure to either no osmolarity change or slow rates of osmolarity increase, suggesting that the cell's internal osmolarity increases in vitro. After volume reduction or elevation, cells do not return to their initial volume.


2015 ◽  
Vol 4 (39) ◽  
pp. 6787-6792
Author(s):  
Sheetal Singh ◽  
Amlendu Nagar ◽  
Pramod Sakhi ◽  
Sachin Kataria ◽  
Kumud Julka ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0255660
Author(s):  
Christian O. Ayala-Ortiz ◽  
Jacob W. Farriester ◽  
Carrie J. Pratt ◽  
Anna K. Goldkamp ◽  
Jessica Matts ◽  
...  

Nicrophorus is a genus of beetles that bury and transform small vertebrate carcasses into a brood ball coated with their oral and anal secretions to prevent decay and that will serve as a food source for their young. Nicrophorus pustulatus is an unusual species with the ability to overtake brood of other burying beetles and whose secretions, unlike other Nicrophorus species, has been reported not to exhibit antimicrobial properties. This work aims to better understand how the presence or absence of a food source influences the expression of genes involved in the feeding process of N. pustulatus. To achieve that, total RNA was extracted from pooled samples of salivary gland tissue from N. pustulatus and sequenced using an Illumina platform. The resulting reads were used to assemble a de novo transcriptome using Trinity. Duplicates with more than 95% similarity were removed to obtain a “unigene” set. Annotation of the unigene set was done using the Trinotate pipeline. Transcript abundance was determined using Kallisto and differential gene expression analysis was performed using edgeR. A total of 651 genes were found to be differentially expressed, including 390 upregulated and 261 downregulated genes in fed insects compared to starved. Several genes upregulated in fed beetles are associated with the insect immune response and detoxification processes with only one transcript encoding for the antimicrobial peptide (AMP) defensin. These results confirm that N. pustulatus does not upregulate the production of genes encoding AMPs during feeding. This study provides a snapshot of the changes in gene expression in the salivary glands of N. pustulatus following feeding while providing a well described transcriptome for the further analysis of this unique burying beetle.


Sign in / Sign up

Export Citation Format

Share Document