scholarly journals Endocytic Pathway of Feline Coronavirus for Cell Entry: Differences in Serotype-Dependent Viral Entry Pathway

Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 300 ◽  
Author(s):  
Tomomi Takano ◽  
Yumeho Wakayama ◽  
Tomoyoshi Doki

Feline coronavirus (FCoV) is a pathogen causing a lethal infectious disease in cats, feline infectious peritonitis. It has two serotypes (type I FCoV and type II FCoV). According to our previous study, type I FCoV infection is inhibited by compounds inducing intracellular cholesterol accumulation, whereas type II FCoV infection is not inhibited. Intracellular cholesterol accumulation was reported to disrupt late endosome function. Based on these findings, types I and II FCoV are considered to enter the cytosol through late and early endosomes, respectively. We investigated whether the antiviral activities of a late endosome trafficking inhibitor and cholesterol-accumulating agents are different between the FCoV serotypes. The late endosome trafficking inhibitor did not inhibit type II FCoV infection, but it inhibited type I FCoV infection. Type I FCoV infection was inhibited by cholesterol-accumulating triazoles, but not by non-cholesterol-accumulating triazoles. These phenomena were observed in both feline cell lines and feline primary macrophages. This study provides additional information on the differences in intracellular reproductive cycle between type I and type II FCoV.

1990 ◽  
Vol 111 (2) ◽  
pp. 329-345 ◽  
Author(s):  
J Tooze ◽  
M Hollinshead ◽  
T Ludwig ◽  
K Howell ◽  
B Hoflack ◽  
...  

Intracisternal granules (ICGs) are insoluble aggregates of pancreatic digestive enzymes and proenzymes that develop within the lumen of the rough endoplasmic reticulum of exocrine pancreatic cells, especially in guinea pigs. These ICGs are eliminated by autophagy. By morphological criteria, we identified three distinct and sequential classes of autophagic compartments, which we refer to as phagophores, Type I autophagic vacuoles, and Type II autophagic vacuoles. Lobules of guinea pig pancreas were incubated in media containing HRP for periods of 5-120 min to determine the relationship between the endocytic and autophagic pathways. Incubations with HRP of 15 min or less labeled early endosomes at the cell periphery that were not involved in autophagy of ICGs, but after these short incubations none of the autophagic compartments were HRP positive. After 30-min incubation with HRP, early endosomes at the cell periphery, late endosomes in the pericentriolar region, and, in addition, Type I autophagic vacuoles containing ICGs were all labeled by the tracer. Type II autophagic vacuoles were not labeled after 30-min incubation with HRP but were labeled after incubations of 60-120 min. Phagophores did not receive HRP even after 120 min incubations. We concluded that the autophagic and endocytic pathways converge immediately after the early endosome level and that Type I autophagic vacuoles precede Type II autophagic vacuoles on the endocytic pathway. We studied the distribution of acid phosphatase, lysosomal proteases and cation-independent-mannose-6-phosphate receptor (CI-M6PR) in the three classes of autophagic compartments by histochemical and immunocytochemical methods. Phagophores, the earliest autophagic compartment, contained none of these markers. Type I autophagic vacuoles contained acid phosphatase but, at most, only very low levels of cathepsin D and CI-M6PR. Type II autophagic vacuoles, by contrast, are enriched for acid phosphatase, cathepsin D, and other lysosomal enzymes, and they are also enriched for CI-M6PR. Moreover, soluble fragments of bovine CI-M6PR conjugated to colloidal gold particles heavily labeled Type II but not Type I autophagic vacuoles, and this labeling was specifically blocked by mannose-6-phosphate. This indicates that the lysosomal enzymes present in Type II autophagic vacuoles carry mannose-6-phosphate monoester residues. Using 3-C2, 4-dinitroanilino-3'-amino-N-methyldipropylamine (DAMP), we showed that Type II autophagic vacuoles are acidic. We interpret these findings as indicating that Type II autophagic vacuoles are a prelysosomal compartment in which the already combined endocytic and autophagic pathways meet the delivery pathway of lysosomal enzymes.


2000 ◽  
Vol 11 (7) ◽  
pp. 2327-2333 ◽  
Author(s):  
Diane McVey Ward ◽  
Jonathan Pevsner ◽  
Matthew A. Scullion ◽  
Michael Vaughn ◽  
Jerry Kaplan

Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome–lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome–lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome–lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome–lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.


2012 ◽  
Vol 9 (1) ◽  
pp. 278 ◽  
Author(s):  
Amer Alazawy ◽  
Siti Suri Arshad ◽  
Abdul Rahman Omar ◽  
Mohd Hair Bejo ◽  
Faruku Bande ◽  
...  

2007 ◽  
Vol 178 (2) ◽  
pp. 201-208 ◽  
Author(s):  
Azeddine Atfi ◽  
Emmanuelle Dumont ◽  
Frédéric Colland ◽  
Dominique Bonnier ◽  
Annie L'Helgoualc'h ◽  
...  

Transforming growth factor-β (TGF-β) regulates a wide variety of biological processes through two types of Ser/Thr transmembrane receptors: the TGF-β type I receptor and the TGF-β type II receptor (TβRII). Upon ligand binding, TGF-β type I receptor activated by TβRII propagates signals to Smad proteins, which mediate the activation of TGF-β target genes. In this study, we identify ADAM12 (a disintegrin and metalloproteinase 12) as a component of the TGF-β signaling pathway that acts through association with TβRII. We found that ADAM12 functions by a mechanism independent of its protease activity to facilitate the activation of TGF-β signaling, including the phosphorylation of Smad2, association of Smad2 with Smad4, and transcriptional activation. Furthermore, ADAM12 induces the accumulation of TβRII in early endosomal vesicles and stabilizes the TβRII protein presumably by suppressing the association of TβRII with Smad7. These results define ADAM12 as a new partner of TβRII that facilitates its trafficking to early endosomes in which activation of the Smad pathway is initiated.


2022 ◽  
Vol 119 (4) ◽  
pp. e2117576119
Author(s):  
Bo Yang ◽  
Yuanyuan Jia ◽  
Yumin Meng ◽  
Ying Xue ◽  
Kefang Liu ◽  
...  

After binding to its cell surface receptor angiotensin converting enzyme 2 (ACE2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the host cell through directly fusing with plasma membrane (cell surface pathway) or undergoing endocytosis traveling to lysosome/late endosome for membrane fusion (endocytic pathway). However, the endocytic entry regulation by host cell remains elusive. Recent studies show ACE2 possesses a type I PDZ binding motif (PBM) through which it could interact with a PDZ domain-containing protein such as sorting nexin 27 (SNX27). In this study, we determined the ACE2-PBM/SNX27-PDZ complex structure, and, through a series of functional analyses, we found SNX27 plays an important role in regulating the homeostasis of ACE2 receptor. More importantly, we demonstrated SNX27, together with retromer complex (the core component of the endosomal protein sorting machinery), prevents ACE2/virus complex from entering lysosome/late endosome, resulting in decreased viral entry in cells where the endocytic pathway dominates. The ACE2/virus retrieval mediated by SNX27–retromer could be considered as a countermeasure against invasion of ACE2 receptor-using SARS coronaviruses.


1998 ◽  
Vol 72 (5) ◽  
pp. 4508-4514 ◽  
Author(s):  
Arnold A. P. M. Herrewegh ◽  
Ingrid Smeenk ◽  
Marian C. Horzinek ◽  
Peter J. M. Rottier ◽  
Raoul J. de Groot

ABSTRACT Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to recombinant viruses which encode a CCV-like S protein and the M, N, 7a, and 7b proteins of FCoV type I (K. Motowaka, T. Hoh- datsu, H. Hashimoto, and H. Koyama, Microbiol. Immunol. 40:425–433, 1996; H. Vennema, A. Poland, K. Floyd Hawkins, and N. C. Pedersen, Feline Pract. 23:40–44, 1995). In the present study, we have looked for additional FCoV-CCV recombination sites. Four regions in the pol gene were selected for comparative sequence analysis of the type II FCoV strains 79-1683 and 79-1146, the type I FCoV strains TN406 and UCD1, the CCV strain K378, and the TGEV strain Purdue. Our data show that the type II FCoVs have arisen from double recombination events: additional crossover sites were mapped in the ORF1ab frameshifting region of strain 79-1683 and in the 5′ half of ORF1b of strain 79-1146.


2006 ◽  
Vol 17 (7) ◽  
pp. 2896-2909 ◽  
Author(s):  
Marta Marchetti ◽  
Marie-Noelle Monier ◽  
Alexandre Fradagrada ◽  
Keith Mitchell ◽  
Florence Baychelier ◽  
...  

Type I (α/β) and type II (γ) interferons (IFNs) bind to distinct receptors, although they activate the same signal transducer and activator of transcription, Stat1, raising the question of how signal specificity is maintained. Here, we have characterized the sorting of IFN receptors (IFN-Rs) at the plasma membrane and the role it plays in IFN-dependent signaling and biological activities. We show that both IFN-α and IFN-γ receptors are internalized by a classical clathrin- and dynamin-dependent endocytic pathway. Although inhibition of clathrin-dependent endocytosis blocked the uptake of IFN-α and IFN-γ receptors, this inhibition only affected IFN-α–induced Stat1 and Stat2 signaling. Furthermore, the antiviral and antiproliferative activities induced by IFN-α but not IFN-γ were also affected. Finally, we show that, unlike IFN-α receptors, activated IFN-γ receptors rapidly become enriched in plasma membrane lipid microdomains. We conclude that IFN-R compartmentalization at the plasma membrane, through clathrin-dependent endocytosis and lipid-based microdomains, plays a critical role in the signaling and biological responses induced by IFNs and contributes to establishing specificity within the Jak/Stat signaling pathway.


2021 ◽  
Vol 9 (9) ◽  
pp. 1801
Author(s):  
Shih-Jung Yen ◽  
Hui-Wen Chen

Ninety-five effusion samples were collected from cats with suspected feline infectious peritonitis in northern Taiwan; these samples showed a 47.4% (45/95) feline coronavirus (FCoV) positivity rate on immunofluorescence staining and RT-PCR. Young cats (≤24 months old) were found to have a significantly higher risk than cats >24 months old (odds ratio (OR) = 6.19, 95% confidence interval (CI) 2.54–16.00). No significant association was found between the positive rates and sex or breed. The A/G ratio in positive cases was significantly lower than the A/G ratio in negative cases. Genotyping and sequencing of the positive cases revealed 71.9% single infection with type I strains and 28.1% coinfection with types I and II. No single infections with type II strains were noted. The type I sequences had high diversity, while the type II sequences had high internal sequence identity and were more similar to CoVs from other species, such as dogs, pigs, and various small mammals. This study demonstrates the latest analysis of FCoV infection cases in northern Taiwan.


2003 ◽  
Vol 14 (1) ◽  
pp. 142-155 ◽  
Author(s):  
Satoshi Waguri ◽  
Frédérique Dewitte ◽  
Roland Le Borgne ◽  
Yves Rouillé ◽  
Yasuo Uchiyama ◽  
...  

We have stably expressed in HeLa cells a chimeric protein made of the green fluorescent protein (GFP) fused to the transmembrane and cytoplasmic domains of the mannose 6-phosphate/insulin like growth factor II receptor in order to study its dynamics in living cells. At steady state, the bulk of this chimeric protein (GFP-CI-MPR) localizes to the trans-Golgi network (TGN), but significant amounts are also detected in peripheral, tubulo-vesicular structures and early endosomes as well as at the plasma membrane. Time-lapse videomicroscopy shows that the GFP-CI-MPR is ubiquitously detected in tubular elements that detach from the TGN and move toward the cell periphery, sometimes breaking into smaller tubular fragments. The formation of the TGN-derived tubules is temperature dependent, requires the presence of intact microtubule and actin networks, and is regulated by the ARF-1 GTPase. The TGN-derived tubules fuse with peripheral, tubulo-vesicular structures also containing the GFP-CI-MPR. These structures are highly dynamic, fusing with each other as well as with early endosomes. Time-lapse videomicroscopy performed on HeLa cells coexpressing the CFP-CI-MPR and the AP-1 complex whose γ-subunit was fused to YFP shows that AP-1 is present not only on the TGN and peripheral CFP-CI-MPR containing structures but also on TGN-derived tubules containing the CFP-CI-MPR. The data support the notion that tubular elements can mediate MPR transport from the TGN to a peripheral, tubulo-vesicular network dynamically connected with the endocytic pathway and that the AP-1 coat may facilitate MPR sorting in the TGN and endosomes.


2021 ◽  
Vol 102 (9) ◽  
Author(s):  
Qun Zhou ◽  
Yan Li ◽  
Jian Huang ◽  
Nengsheng Fu ◽  
Xin Song ◽  
...  

Feline coronavirus (FCoV) is the causative agent of feline infectious peritonitis and diarrhoea in kittens worldwide. In this study, a total of 173 feline diarrhoeal faecal and ascetic samples were collected from 15 catteries and six veterinary hospitals in southwest China from 2017 to 2020. FCoV was detected in 80.35 % (139/173) of the samples using the RT-nPCR method; these included infections with 122 type I FCoV and 57 type II FCoV. Interestingly, 51 cases had co-infection with types I and II, the first such report in mainland China. To further analyse the genetic diversity of FCoV, we amplified 23 full-length spike (S) genes, including 18 type I and five type II FCoV. The type I FCoV and type II FCoV strains shared 85.5–98.7% and 97.4–98.9% nucleotide (nt) sequence identities between one another, respectively. The N-terminal domain (NTD) of 23 FCoV strains showed a high degree of variation (73.6–80.3 %). There was six type I FCoV strains with two amino acid insertions (159HL160) in the NTD. In addition, 18 strains of type I FCoV belonged to the Ie cluster, and five strains of type II FCoV were in the IIb cluster based on phylogenetic analysis. Notably, it was first time that two type I FCoV strains had recombination in the NTD, and the recombination regions was located 140–857 nt of the S gene. This study constitutes a systematic investigation of the current infection status and molecular characteristics of FCoV in southwest China.


Sign in / Sign up

Export Citation Format

Share Document