scholarly journals Susceptibility of Avian Species to Brucella Infection: A Hypothesis-Driven Study

Pathogens ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 77 ◽  
Author(s):  
Gamal Wareth ◽  
Ahmed Kheimar ◽  
Heinrich Neubauer ◽  
Falk Melzer

Brucellosis is a highly contagious bacterial disease affecting a wide range of animals, as well as humans. The existence of the clinically diagnosed brucellosis in avian species is controversially discussed. In the current study, we set to summarize the current knowledge on the presence of brucellae in avian species. Anti-Brucella antibodies were monitored in different avian species using classical diagnostic tools. Experimental infection of chicken embryos induced the disease and resulted in the development of specific lesions. Few empirical studies have been performed in adult poultry. However, the isolation of brucellae from naturally-infected chickens has not been possible yet.

AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yaoyao Wang ◽  
Jilei Zhang ◽  
Kelly Patrick ◽  
Min Li ◽  
Jiansen Gong ◽  
...  

Abstract With PCR becoming one of the most important and widely-used diagnostic tools for infectious diseases of poultry, an urgent need has developed for an endogenous internal control (EIC) that monitors the quality and quantity of poultry DNA in test samples. In this study we developed a SYBR-qPCR to target the poultry homolog of the hydroxymethylbilane synthase (HMBS) gene as an EIC for avian species. The avian HMBS-based qPCR was very sensitive, detecting one HMBS gene copy in a 20 µL reaction, and is highly specific for avian species. It amplified DNA from 11 organs and tissues of chickens showing it can be used as an EIC on a large variety of samples. The application of the established EIC on clinically and experimentally infected samples demonstrated that false negativity and result variations could result from samples being collected using different operators, techniques, preservatives, and storage times. The high sensitivity and specificity of the avian HMBS-based qPCR, its ability to quantify DNAs extracted from a wide range of tissues and poultry species along with its usefulness in reducing false negativity in PCR results associated with inadequate sampling and storage degradation makes it an ideal EIC for poultry DNA and RNA PCR diagnostics. The study also highlights the importance of appropriate sampling and storage of samples in ensuring accuracy of molecular diagnostic testing.


2020 ◽  
Vol 20 (1) ◽  
pp. 102-105 ◽  
Author(s):  
Hossein A. Rahdar ◽  
Mansoor Kodori ◽  
Mohamad R. Salehi ◽  
Mahsa Doomanlou ◽  
Morteza Karami-Zarandi ◽  
...  

Background: Brucellosis, a major health problem in developing countries, is a multisystem infection with a broad spectrum of clinical manifestations. Hematological complications, ranging from an intravascular coagulopathy to mild homeostasis disorders (such as gammopathy), have been reported in brucella infection. These signs and symptoms may lead to misdiagnosis of brucellosis with other hematological diseases. Case: A 65-year-old male whose occupation was shepherding was referred to our hospital as a known case of multiple myeloma with continuous fever, muscle weakness, and night sweating after taking 2 courses of chemotherapy. The laboratory diagnosis of multiple myeloma had been based on the observation of a high percent of plasma cells in the bone marrow aspiration. At follow- up, the result of patient's fever workup, with 2 sets of blood cultures, was positive for Brucella melitensis. Isolated brucella was confirmed as B. melitensis by 16S rRNA sequencing. Brucellosis serologic test was performed by agglutination test and positive results were obtained. The patient was discharged with the cessation of fever and general improvement after the end of the parental treatment phase of brucella bacteremia. Conclusions: Brucella infection may cause a severe disease, mimicking a primary hematological disease, which could complicate the correct diagnosis. In brucellosis cases, due to the wide range of symptoms, in addition to cultivation and serological methods, molecular methods should also be used to prevent inappropriate diagnosis and additional costs.


Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 469 ◽  
Author(s):  
Vila-Aiub

Herbicide resistance is the ultimate evidence of the extraordinary capacity of weeds to evolve under stressful conditions. Despite the extraordinary plant fitness advantage endowed by herbicide resistance mutations in agroecosystems under herbicide selection, resistance mutations are predicted to exhibit an adaptation cost (i.e., fitness cost), relative to the susceptible wild-type, in herbicide untreated conditions. Fitness costs associated with herbicide resistance mutations are not universal and their expression depends on the particular mutation, genetic background, dominance of the fitness cost, and environmental conditions. The detrimental effects of herbicide resistance mutations on plant fitness may arise as a direct impact on fitness-related traits and/or coevolution with changes in other life history traits that ultimately may lead to fitness costs under particular ecological conditions. This brings the idea that a “lower adaptive value” of herbicide resistance mutations represents an opportunity for the design of resistance management practices that could minimize the evolution of herbicide resistance. It is evident that the challenge for weed management practices aiming to control, minimize, or even reverse the frequency of resistance mutations in the agricultural landscape is to “create” those agroecological conditions that could expose, exploit, and exacerbate those life history and/or fitness traits affecting the evolution of herbicide resistance mutations. Ideally, resistance management should implement a wide range of cultural practices leading to environmentally mediated fitness costs associated with herbicide resistance mutations.


2015 ◽  
Vol 81 (7) ◽  
pp. 2481-2488 ◽  
Author(s):  
Volker Winstel ◽  
Petra Kühner ◽  
Bernhard Krismer ◽  
Andreas Peschel ◽  
Holger Rohde

ABSTRACTGenetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a uniqueStaphylococcus aureusstrain via a specificS. aureusbacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinicalStaphylococcus epidermidisisolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion.


2021 ◽  
Vol 9 (8) ◽  
pp. 1656
Author(s):  
Simona Gabrielli ◽  
Marialetizia Palomba ◽  
Federica Furzi ◽  
Emanuele Brianti ◽  
Gabriella Gaglio ◽  
...  

Blastocystis is a common intestinal protist distributed worldwide, infecting humans and a wide range of domestic and wild animals. It exhibits an extensive genetic diversity and, so far, 25 distinct small subunit ribosomal RNA (SSU rRNA) lineages termed subtypes (STs)) have been characterized; among them, 12 have thus far been reported in humans. The aims of the present study were to detect and genetically characterize Blastocystis sp. in synantropic animals to improve our current knowledge on the distribution and zoonotic transmission of Blastocystis STs in Italy. Samples were collected from N = 193 farmed animals and submitted to DNA extraction and PCR amplification of the SSU rRNA. Blastocystis was detected in 60 samples (31.08%) and successfully subtyped. Phylogenetic analysis evidenced that the isolates from fallow deer, goats, and pigs (N = 9) clustered within the ST5; those from pheasants (N = 2) in the ST6; those from chickens (N = 8) in the ST7; those from sheep (N = 6) in the ST10; and those from water buffaloes (N = 9) in the ST14 clade. The comparison between the present isolates from animals and those previously detected in humans in Italy suggested the animal-to-human spillover for ST6 and ST7. The present study represents the widest Blastocystis survey performed thus far in farmed animals in Italy. Further epidemiological studies using molecular approaches are required to determine the occurrence and distribution of Blastocystis STs in other potential animal reservoirs in Italy and to define the pathways of zoonotic transmission.


Genes ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 51
Author(s):  
Adesola J. Tola ◽  
Amal Jaballi ◽  
Hugo Germain ◽  
Tagnon D. Missihoun

Abiotic and biotic stresses induce the formation of reactive oxygen species (ROS), which subsequently causes the excessive accumulation of aldehydes in cells. Stress-derived aldehydes are commonly designated as reactive electrophile species (RES) as a result of the presence of an electrophilic α, β-unsaturated carbonyl group. Aldehyde dehydrogenases (ALDHs) are NAD(P)+-dependent enzymes that metabolize a wide range of endogenous and exogenous aliphatic and aromatic aldehyde molecules by oxidizing them to their corresponding carboxylic acids. The ALDH enzymes are found in nearly all organisms, and plants contain fourteen ALDH protein families. In this review, we performed a critical analysis of the research reports over the last decade on plant ALDHs. Newly discovered roles for these enzymes in metabolism, signaling and development have been highlighted and discussed. We concluded with suggestions for future investigations to exploit the potential of these enzymes in biotechnology and to improve our current knowledge about these enzymes in gene signaling and plant development.


Author(s):  
Mamou Diallo ◽  
Servé W. M. Kengen ◽  
Ana M. López-Contreras

AbstractThe Clostridium genus harbors compelling organisms for biotechnological production processes; while acetogenic clostridia can fix C1-compounds to produce acetate and ethanol, solventogenic clostridia can utilize a wide range of carbon sources to produce commercially valuable carboxylic acids, alcohols, and ketones by fermentation. Despite their potential, the conversion by these bacteria of carbohydrates or C1 compounds to alcohols is not cost-effective enough to result in economically viable processes. Engineering solventogenic clostridia by impairing sporulation is one of the investigated approaches to improve solvent productivity. Sporulation is a cell differentiation process triggered in bacteria in response to exposure to environmental stressors. The generated spores are metabolically inactive but resistant to harsh conditions (UV, chemicals, heat, oxygen). In Firmicutes, sporulation has been mainly studied in bacilli and pathogenic clostridia, and our knowledge of sporulation in solvent-producing or acetogenic clostridia is limited. Still, sporulation is an integral part of the cellular physiology of clostridia; thus, understanding the regulation of sporulation and its connection to solvent production may give clues to improve the performance of solventogenic clostridia. This review aims to provide an overview of the triggers, characteristics, and regulatory mechanism of sporulation in solventogenic clostridia. Those are further compared to the current knowledge on sporulation in the industrially relevant acetogenic clostridia. Finally, the potential applications of spores for process improvement are discussed.Key Points• The regulatory network governing sporulation initiation varies in solventogenic clostridia.• Media composition and cell density are the main triggers of sporulation.• Spores can be used to improve the fermentation process.


2020 ◽  
Vol 17 (163) ◽  
pp. 20190721
Author(s):  
J. Larsson ◽  
A. M. Westram ◽  
S. Bengmark ◽  
T. Lundh ◽  
R. K. Butlin

The growth of snail shells can be described by simple mathematical rules. Variation in a few parameters can explain much of the diversity of shell shapes seen in nature. However, empirical studies of gastropod shell shape variation typically use geometric morphometric approaches, which do not capture this growth pattern. We have developed a way to infer a set of developmentally descriptive shape parameters based on three-dimensional logarithmic helicospiral growth and using landmarks from two-dimensional shell images as input. We demonstrate the utility of this approach, and compare it to the geometric morphometric approach, using a large set of Littorina saxatilis shells in which locally adapted populations differ in shape. Our method can be modified easily to make it applicable to a wide range of shell forms, which would allow for investigations of the similarities and differences between and within many different species of gastropods.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Roland Stengl ◽  
Bence Ágg ◽  
Miklós Pólos ◽  
Gábor Mátyás ◽  
Gábor Szabó ◽  
...  

Abstract Background Marfan syndrome (MFS) is a genetically determined systemic connective tissue disorder, caused by a mutation in the FBN1 gene. In MFS mainly the cardiovascular, musculoskeletal and ocular systems are affected. The most dangerous manifestation of MFS is aortic dissection, which needs to be prevented by a prophylactic aortic root replacement. Main body The indication criteria for the prophylactic procedure is currently based on aortic diameter, however aortic dissections below the threshold defined in the guidelines have been reported, highlighting the need for a more accurate risk stratification system to predict the occurrence of aortic complications. The aim of this review is to present the current knowledge on the possible predictors of severe cardiovascular manifestations in MFS patients, demonstrating the wide range of molecular and radiological differences between people with MFS and healthy individuals, and more importantly between MFS patients with and without advanced aortic manifestations. These differences originating from the underlying common molecular pathological processes can be assessed by laboratory (e.g. genetic testing) and imaging techniques to serve as biomarkers of severe aortic involvement. In this review we paid special attention to the rapidly expanding field of genotype–phenotype correlations for aortic features as by collecting and presenting the ever growing number of correlations, future perspectives for risk stratification can be outlined. Conclusions Data on promising biomarkers of severe aortic complications of MFS have been accumulating steadily. However, more unifying studies are required to further evaluate the applicability of the discussed predictors with the aim of improving the risk stratification and therefore the life expectancy and quality of life of MFS patients.


2021 ◽  
Vol 10 (11) ◽  
pp. 2457
Author(s):  
Birgit J. Gerecke ◽  
Rolf Engberding

Noncompaction cardiomyopathy (NCCM) has gained increasing attention over the past twenty years, but in daily clinical practice NCCM is still rarely considered. So far, there are no generally accepted diagnostic criteria and some groups even refuse to acknowledge it as a distinct cardiomyopathy, and grade it as a variant of dilated cardiomyopathy or a morphological trait of different conditions. A wide range of morphological variants have been observed even in healthy persons, suggesting that pathologic remodeling and physiologic adaptation have to be differentiated in cases where this spongy myocardial pattern is encountered. Recent studies have uncovered numerous new pathogenetic and pathophysiologic aspects of this elusive cardiomyopathy, but a current summary and evaluation of clinical patient management are still lacking, especially to avoid mis- and overdiagnosis. Addressing this issue, this article provides an up to date overview of the current knowledge in classification, pathogenesis, pathophysiology, epidemiology, clinical manifestations and diagnostic evaluation, including genetic testing, treatment and prognosis of NCCM.


Sign in / Sign up

Export Citation Format

Share Document