scholarly journals Glycoprotein- and Lectin-Based Approaches for Detection of Pathogens

Pathogens ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 694
Author(s):  
Sammer-ul Hassan ◽  
Ahmed Donia ◽  
Usman Sial ◽  
Xunli Zhang ◽  
Habib Bokhari

Infectious diseases alone are estimated to result in approximately 40% of the 50 million total annual deaths globally. The importance of basic research in the control of emerging and re-emerging diseases cannot be overemphasized. However, new nanotechnology-based methodologies exploiting unique surface-located glycoproteins or their patterns can be exploited to detect pathogens at the point of use or on-site with high specificity and sensitivity. These technologies will, therefore, affect our ability in the future to more accurately assess risk. The critical challenge is making these new methodologies cost-effective, as well as simple to use, for the diagnostics industry and public healthcare providers. Miniaturization of biochemical assays in lab-on-a-chip devices has emerged as a promising tool. Miniaturization has the potential to shape modern biotechnology and how point-of-care testing of infectious diseases will be performed by developing smart microdevices that require minute amounts of sample and reagents and are cost-effective, robust, and sensitive and specific. The current review provides a short overview of some of the futuristic approaches using simple molecular interactions between glycoproteins and glycoprotein-binding molecules for the efficient and rapid detection of various pathogens at the point of use, advancing the emerging field of glyconanodiagnostics.

2021 ◽  
Author(s):  
Leland B Hyman ◽  
Clare R Christopher ◽  
Philip A Romero

Single-nucleotide polymorphisms (SNPs) are the most common source of genetic variation between individuals and have implications in human disease, pathogen drug resistance, and agriculture. SNPs are typically detected using DNA sequencing, which requires advanced sample preparation and instrumentation, and thus cannot be deployed for on-site testing or in low-resource settings. In this work we have developed a simple and robust assay to rapidly detect SNPs in nucleic acid samples. Our approach combines LAMP-based target amplification with fluorescent probes to detect SNPs with high specificity in a one-pot reaction format. A competitive "sink" strand preferentially binds to off-target products and shifts the free energy landscape to favor specific activation by SNP products. We demonstrated the broad utility and reliability of our SNP-LAMP method by detecting three distinct SNPs across the human genome. We also designed an assay to rapidly detect highly transmissible SARS-CoV-2 variants. This work demonstrates that competitive SNP-LAMP is a powerful and universal method that could be applied in point-of-care settings to detect any target SNP with high specificity and sensitivity.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vanessa Redecke ◽  
Kazuki Tawaratsumida ◽  
Erin T. Larragoite ◽  
Elizabeth S. C. P. Williams ◽  
Vicente Planelles ◽  
...  

AbstractDiagnostic tests that detect antibodies (AB) against SARS-CoV-2 for evaluation of seroprevalence and guidance of health care measures are important tools for managing the COVID-19 pandemic. Current tests have certain limitations with regard to turnaround time, costs and availability, particularly in point-of-care (POC) settings. We established a hemagglutination-based AB test that is based on bi-specific proteins which contain a dromedary-derived antibody (nanobody) binding red blood cells (RBD) and a SARS-CoV-2-derived antigen, such as the receptor-binding domain of the Spike protein (Spike-RBD). While the nanobody mediates swift binding to RBC, the antigen moiety directs instantaneous, visually apparent hemagglutination in the presence of SARS-CoV-2-specific AB generated in COVID-19 patients or vaccinated individuals. Method comparison studies with assays cleared by emergency use authorization demonstrate high specificity and sensitivity. To further increase objectivity of test interpretation, we developed an image analysis tool based on digital image acquisition (via a cell phone) and a machine learning algorithm based on defined sample-training and -validation datasets. Preliminary data, including a small clinical study, provides proof of principle for test performance in a POC setting. Together, the data support the interpretation that this AB test format, which we refer to as ‘NanoSpot.ai’, is suitable for POC testing, can be manufactured at very low costs and, based on its generic mode of action, can likely be adapted to a variety of other pathogens.


2016 ◽  
Vol 10 (1) ◽  
pp. 176-182 ◽  
Author(s):  
Reza Ranjbar ◽  
Payam Behzadi ◽  
Caterina Mammina

Background:Francisella tularensis(F. tularensis) is the etiological microorganism for tularemia. There are different forms of tularemia such as respiratory tularemia. Respiratory tularemia is the most severe form of tularemia with a high rate of mortality; if not treated. Therefore, traditional microbiological tools and Polymerase Chain Reaction (PCR) are not useful for a rapid, reliable, accurate, sensitive and specific diagnosis. But, DNA microarray technology does. DNA microarray technology needs to appropriate microarray probe designing.Objective:The main goal of this original article was to design suitable long oligo microarray probes for detection and identification ofF. tularensis.Method:For performing this research, the complete genomes ofF. tularensissubsp.tularensisFSC198,F. tularensissubsp.holarcticaLVS,F. tularensissubsp.mediasiatica,F. tularensissubsp.novicida(F. novicidaU112), andF. philomiragiasubsp.philomiragiaATCC 25017 were studiedviaNCBI BLAST tool, GView and PanSeq Servers and finally the microarray probes were produced and processedviaAlleleID 7.7 software and Oligoanalyzer tool, respectively.Results:In thisin silicoinvestigation, a number of long oligo microarray probes were designed for detecting and identifyingF. tularensis. Among these probes, 15 probes were recognized as the best candidates for microarray chip designing.Conclusion:Calibrated microarray probes reduce the biasis of DNA microarray technology as an advanced, rapid, accurate and cost-effective molecular diagnostic tool with high specificity and sensitivity. Professional microarray probe designing provides us with much more facility and flexibility regarding preparation of a microarray diagnostic chip.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Lumir Kunovsky ◽  
Pavla Tesarikova ◽  
Zdenek Kala ◽  
Radek Kroupa ◽  
Petr Kysela ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal solid malignancies with increasing incidence. The poor prognosis is due to the aggressive nature of the tumor, late detection, and the resistance to chemotherapy and radiotherapy. A radical surgery procedure is the only treatment that has been shown to improve the 5-year survival rate to 20-25%. However, the majority of patients (80-85%) are diagnosed with locally advanced or metastatic disease and just 15-20% patients are diagnosed in an early stage allowing them to undergo the potentially curative surgical resection. The early detection of PDAC without the use of invasive methods is challenging and discovery of a cost-effective biomarker with high specificity and sensitivity could significantly improve the treatment and survival in these patients. In this review, we summarize current and newly examined biomarkers in early PDAC detection.


Author(s):  
C. S. Asha ◽  
B. R. Suchit Roy

<p class="abstract"><strong>Background:</strong> Neck swellings are a common clinical finding affecting all age groups. FNAC is a minimally invasive procedure helpful in the diagnosis of various neck swellings. The purpose of this study is to determine the accuracy of FNAC in the diagnosis of neck swellings by comparing it with the histopathology which is taken as the gold standard.</p><p class="abstract"><strong>Methods:</strong> A prospective study which included 90 patients who attended ENT and surgery departments of Government Medical College, Trivandrum with neck swellings from July 2006-2007. FNAC of the swelling was done and the FNAC results were compared with the histopathology results. The specificity, sensitivity, positive and negative predictive values and accuracy of FNAC were calculated.  </p><p class="abstract"><strong>Results:</strong> Of the 90 patients, thyroid swelling formed the major group followed by lymph node, salivary gland and miscellaneous swellings. Thyroid swellings had a female predominance while the other three groups namely lymph node, salivary gland and miscellaneous groups showed a male preponderance. When the neck swellings namely thyroid, salivary gland, lymph node and miscellaneous group were taken into consideration as a whole, the sensitivity of FNAC for detecting malignancy was 64.3%. The specificity, positive predictive value, negative predictive value and accuracy were 97.4%, 81.8%, 93.7% and 92% respectively.</p><p class="abstract"><strong>Conclusions:</strong> FNAC can be rated as a safe, simple, reliable, cost effective and rapid diagnostic tool with high specificity and sensitivity for the initial evaluation of neck swellings.</p>


The Analyst ◽  
2021 ◽  
Author(s):  
Lisa K. Seiler ◽  
Rebecca Jonczyk ◽  
Patrick Lindner ◽  
Ncog Linh Phung ◽  
Christine S. Falk ◽  
...  

In this work a novel point of care test to detect sIL-2R during acute kidney rejection with high specificity and sensitivity was developed.


2016 ◽  
Vol 60 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Shikha Sharma ◽  
Hannah Byrne ◽  
Richard J. O'Kennedy

The rapid diagnosis of many diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Biosensors are now being applied for rapid diagnostics due to their capacity for point-of-care use with minimum need for operator input. Antibody-based biosensors or immunosensors have revolutionized diagnostics for the detection of a plethora of analytes such as disease markers, food and environmental contaminants, biological warfare agents and illicit drugs. Antibodies are ideal biorecognition elements that provide sensors with high specificity and sensitivity. This review describes monoclonal and recombinant antibodies and different immobilization approaches crucial for antibody utilization in biosensors. Examples of applications of a variety of antibody-based sensor formats are also described.


The Analyst ◽  
2019 ◽  
Vol 144 (14) ◽  
pp. 4241-4249 ◽  
Author(s):  
Chunxue Liu ◽  
Susu Zhang ◽  
Xia Li ◽  
Qingwang Xue ◽  
Wei Jiang

Development of a reliable and facile telomerase activity assay with high specificity and sensitivity is a central challenge to make telomerase testing a routine part of medical care with respect to cancer.


2020 ◽  
Author(s):  
Joshua Longbottom ◽  
Charles Wamboga ◽  
Paul R. Bessell ◽  
Steve J. Torr ◽  
Michelle C. Stanton

AbstractBackgroundSurveillance is an essential component of global programs to eliminate infectious diseases and avert epidemics of (re-)emerging diseases. As the numbers of cases decline, costs of treatment and control diminish but those for surveillance remain high even after the ‘last’ case. Reducing surveillance may risk missing persistent or (re-)emerging foci of disease. Here, we use a simulation-based approach to determine the minimal number of passive surveillance sites required to ensure maximum coverage of a population at-risk (PAR) of an infectious disease.Methodology and Principal FindingsFor this study, we use Gambian human African trypanosomiasis (g-HAT) in north-western Uganda, a neglected tropical disease (NTD) which has been reduced to historically low levels (<1000 cases/year globally), as an example. To quantify travel time to diagnostic facilities, a proxy for surveillance coverage, we produced a high spatial-resolution resistance surface and performed cost-distance analyses. We simulated travel time for the PAR with different numbers (1-170) and locations (170,000 total placement combinations) of diagnostic facilities, quantifying the percentage of the PAR within 1h and 5h travel of the facilities, as per in-country targets. Our simulations indicate that a 70% reduction (51/170) in diagnostic centres still exceeded minimal targets of coverage even for remote populations, with >95% of a total PAR of ~3million individuals living ≤1h from a diagnostic centre, and we demonstrate an approach to best place these facilities, informing a minimal impact scale back.ConclusionsOur results highlight that surveillance of g-HAT in north-western Uganda can be scaled back without reducing coverage of the PAR. The methodology described can contribute to cost-effective and equable strategies for the surveillance of NTDs and other infectious diseases approaching elimination or (re-)emergence.Author SummaryDisease surveillance systems are an essential component of public health practice and are often considered the first line in averting epidemics for (re-)emerging diseases. Regular evaluation of surveillance systems ensures that they remain operating at maximum efficiency; systems that survey diseases of low incidence, such as those within elimination settings, should be simplified to reduce the reporting burden. A lack of guidance on how to optimise disease surveillance in an elimination setting may result in added expense, and/or the underreporting of disease. Here, we propose a framework methodology to determine systematically the optimal number and placement of surveillance sites for the surveillance of infectious diseases approaching elimination. By utilising estimates of geographic accessibility, through the construction of a resistance surface and a simulation approach, we identify that the number of operational diagnostic facilities for Gambian human African trypanosomiasis in north-western Uganda can be reduced by 70% without affecting existing coverage, and identify the minimum number of facilities required to meet coverage targets. Our analysis can be used to inform the number and positioning of surveillance sites for diseases within an elimination setting. Passive surveillance becomes increasingly important as cases decline and active surveillance becomes less cost-effective; methods to evaluate how best to engage this passive surveillance capacity given facility capacity and geographic distribution are pertinent for several NTDs where diagnosis is complex. Not only is this a complicated research area for diseases approaching elimination, a well-designed surveillance system is essential for the detection of emerging diseases, with this work being topical in a climate where emerging pathogens are becoming more commonplace.


2021 ◽  
Vol 15 (3) ◽  
pp. e0008599
Author(s):  
Joshua Longbottom ◽  
Charles Wamboga ◽  
Paul R. Bessell ◽  
Steve J. Torr ◽  
Michelle C. Stanton

Background Surveillance is an essential component of global programs to eliminate infectious diseases and avert epidemics of (re-)emerging diseases. As the numbers of cases decline, costs of treatment and control diminish but those for surveillance remain high even after the ‘last’ case. Reducing surveillance may risk missing persistent or (re-)emerging foci of disease. Here, we use a simulation-based approach to determine the minimal number of passive surveillance sites required to ensure maximum coverage of a population at-risk (PAR) of an infectious disease. Methodology and principal findings For this study, we use Gambian human African trypanosomiasis (g-HAT) in north-western Uganda, a neglected tropical disease (NTD) which has been reduced to historically low levels (<1000 cases/year globally), as an example. To quantify travel time to diagnostic facilities, a proxy for surveillance coverage, we produced a high spatial-resolution resistance surface and performed cost-distance analyses. We simulated travel time for the PAR with different numbers (1–170) and locations (170,000 total placement combinations) of diagnostic facilities, quantifying the percentage of the PAR within 1h and 5h travel of the facilities, as per in-country targets. Our simulations indicate that a 70% reduction (51/170) in diagnostic centres still exceeded minimal targets of coverage even for remote populations, with >95% of a total PAR of ~3million individuals living ≤1h from a diagnostic centre, and we demonstrate an approach to best place these facilities, informing a minimal impact scale back. Conclusions Our results highlight that surveillance of g-HAT in north-western Uganda can be scaled back without substantially reducing coverage of the PAR. The methodology described can contribute to cost-effective and equable strategies for the surveillance of NTDs and other infectious diseases approaching elimination or (re-)emergence.


Sign in / Sign up

Export Citation Format

Share Document