scholarly journals Crosslinked Fibroin Nanoparticles: Investigations on Biostability, Cytotoxicity, and Cellular Internalization

2020 ◽  
Vol 13 (5) ◽  
pp. 86
Author(s):  
Duy Toan Pham ◽  
Nuttawut Saelim ◽  
Raphaël Cornu ◽  
Arnaud Béduneau ◽  
Waree Tiyaboonchai

Recently, crosslinked fibroin nanoparticles (FNP) using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) or the polymer poly(ethylenimine) (PEI) have been developed and showed potentials as novel drug delivery systems. Thus, this study further investigated the biological properties of these crosslinked FNP by labeling them with fluorescein isothiocyanate (FITC) for in vitro studies. All formulations possessed a mean particle size of approximately 300 nm and a tunable zeta potential (−20 to + 30 mV) dependent on the amount/type of crosslinkers. The FITC-bound FNP showed no significant difference in physical properties compared to the blank FNP. They possessed a binding efficacy of 3.3% w/w, and no FITC was released in sink condition up to 8 h. All formulations were colloidal stable in the sheep whole blood. The degradation rate of these FNP in blood could be controlled depending on their crosslink degree. Moreover, no potential toxicity in erythrocytes, Caco-2, HepG2, and 9L cells was noted for all formulations at particle concentrations of < 1 mg/mL. Finally, all FNP were internalized into the Caco-2 cells after 3 h incubation. The uptake rate of the positively charged particles was significantly higher than the negatively charged ones. In summary, the crosslinked FNP were safe and showed high potentials as versatile systems for biomedical applications.

Micromachines ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 861
Author(s):  
Elizabeth E. Niedert ◽  
Chenghao Bi ◽  
Georges Adam ◽  
Elly Lambert ◽  
Luis Solorio ◽  
...  

A microrobot system comprising an untethered tumbling magnetic microrobot, a two-degree-of-freedom rotating permanent magnet, and an ultrasound imaging system has been developed for in vitro and in vivo biomedical applications. The microrobot tumbles end-over-end in a net forward motion due to applied magnetic torque from the rotating magnet. By turning the rotational axis of the magnet, two-dimensional directional control is possible and the microrobot was steered along various trajectories, including a circular path and P-shaped path. The microrobot is capable of moving over the unstructured terrain within a murine colon in in vitro, in situ, and in vivo conditions, as well as a porcine colon in ex vivo conditions. High-frequency ultrasound imaging allows for real-time determination of the microrobot’s position while it is optically occluded by animal tissue. When coated with a fluorescein payload, the microrobot was shown to release the majority of the payload over a 1-h time period in phosphate-buffered saline. Cytotoxicity tests demonstrated that the microrobot’s constituent materials, SU-8 and polydimethylsiloxane (PDMS), did not show a statistically significant difference in toxicity to murine fibroblasts from the negative control, even when the materials were doped with magnetic neodymium microparticles. The microrobot system’s capabilities make it promising for targeted drug delivery and other in vivo biomedical applications.


2014 ◽  
Vol 1 (1) ◽  
Author(s):  
Diti Desai ◽  
Didem Sen Karaman ◽  
Neeraj Prabhakar ◽  
Sina Tadayon ◽  
Alain Duchanoy ◽  
...  

AbstractMesoporous silica nanoparticles (MSNs) have advanced to the forefront of multifunctional nanoparticulate systems in nanomedicine, owing to this highly fexible materials platform enabling a multitude of design options, often in a modular fashion. Drug delivery ability, detectability via diferent imaging modalities, and stimuliresponsiveness are often combined into one particle system. Very sophisticated and versatile designs along with impressive demonstrations of applicability have been reported to date, but a common ground when it comes to some critical considerations valid for any nanoparticle intended for biomedical purposes is lacking to some degree. In this study, we attempt to take a glance at some of the most crucial aspects of biomedical nanoparticulate design and relate how they apply specifically toMSNs. These considerations include fuorophore labeling and leaching with respect to immobilization to MSNs, the surrounding conditions, carrier biodegradability, and surface coating. Surface modifcation strategies and surface charge tuning are further considered in conjunction to the relative amount of cellular uptake and serum protein adsorption. Cellular internalization routes and biological techniques used to evaluate especially in vitro biobehavior are discussed. Our attempt is hereby to draw attention to some of the most frequently occurring issues to be considered in the design of MSN systems for biomedical applications


2018 ◽  
Vol 205 (4) ◽  
pp. 226-239 ◽  
Author(s):  
Marijana Skific ◽  
Mirna Golemovic ◽  
Kristina Crkvenac-Gornik ◽  
Radovan Vrhovac ◽  
Branka Golubic Cepulic

Due to their ability to induce immunological tolerance in the recipient, mesenchymal stromal cells (MSCs) have been utilized in the treatment of various hematological and immune- and inflammation-mediated diseases. The clinical application of MSCs implies prior in vitro expansion that usually includes the use of fetal bovine serum (FBS). The present study evaluated the effect of different platelet lysate (PL) media content on the biological properties of MSCs. MSCs were isolated from the bone marrow of 13 healthy individuals and subsequently expanded in three different culture conditions (10% PL, 5% PL, 10% FBS) during 4 passages. The cells cultured in different conditions had comparable immunophenotype, clonogenic potential, and differentiation capacity. However, MSC growth was significantly enhanced in the presence of PL. Cultures supplemented with 10% PL had a higher number of cumulative population doublings in all passages when compared to the 5% PL condition (p < 0.03). Such a difference was also observed when 10% PL and 10% FBS conditions were compared (p < 0.005). A statistically significant difference in population doubling time was determined only between the 10% PL and 10% FBS conditions (p < 0.005). Furthermore, MSCs cultured in 10% PL were able to cause a 66.9% reduction of mitogen-induced lymphocyte proliferation. Three chromosome aberrations were detected in PL conditions. Since two changes occurred in the same do nor, it is possible they were donor dependent rather than caused by the culture condition. These findings demonstrate that a 10% PL condition enables a higher yield of MSCs within a shorter time without altering MSC properties, and should be favored over the 5% PL condition.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ziyu Ge ◽  
Luming Yang ◽  
Fang Xiao ◽  
Yani Wu ◽  
Tingting Yu ◽  
...  

Graphene family nanomaterials, with superior mechanical, chemical, and biological properties, have grabbed appreciable attention on the path of researches seeking new materials for future biomedical applications. Although potential applications of graphene had been highly reviewed in other fields of medicine, especially for their antibacterial properties and tissue regenerative capacities, in vivo and in vitro studies related to dentistry are very limited. Therefore, based on current knowledge and latest progress, this article aimed to present the recent achievements and provide a comprehensive literature review on potential applications of graphene that could be translated into clinical reality in dentistry.


Author(s):  
Parisa Golkar ◽  
Ladan Ranjbar Omrani ◽  
Shide Zohourinia ◽  
Elham Ahmadi ◽  
Faeze Asadian

Objectives: In this study we assessed the cytotoxic effect of nanohydroxyapatite (NHA) incorporated into resin modified and conventional glass ionomer cements (RMGICs and CGICs) on L929 murine fibroblasts. Materials and Methods: In this in vitro study, 0wt%, 1wt%, 2wt%, 5wt%, 7wt% and 10wt% concentrations of NHA were added to Fuji II LC RMGIC and Fuji IX CGIC powders. Eighteen samples (5×3mm) were fabricated from each type of glass ionomer, in six experimental groups (n=3): CG0, CG1, CG2, CG5, CG7, CG10, RMG0, RMG1, RMG2, RMG5, RMG7, and RMG10. Samples were incubated for 72h. The overlaying solution was removed and added to L929 fibroblasts. The methyl thiazolyl tetrazolium bromide (MTT) assay was performed at 24, 48 and 72h. The wavelength was read by a spectrophotometer. Data were analyzed by ANOVA and Tukey’s test. Results: There was no significant difference in cytotoxicity of the two types of glass ionomers, with and without NHA, except for CG0 and RMG0 groups after 72h. RMG0 group was significantly more cytotoxic than the CG0 group (P<0.05). In CG groups during the first 24h, the cytotoxicity of CG5 and CG7 groups was significantly higher than that of CG1; while, there was no significant difference between the RMG groups. Cytotoxicity significantly decreased in all groups after 24h (P<0.05). Conclusion: Incorporation of NHA into Fuji II LC RMGIC and Fuji IX CGIC did not affect their biocompatibility and therefore its addition to these materials can provide favorable biological properties, especially considering its beneficial effects on the other properties of GICs.


Author(s):  
Índia Olinta de Azevedo Queiroz ◽  
Thiago Machado ◽  
Camila Carneiro Alves ◽  
Victor Gustavo Balera Brito ◽  
Bruno Carvalho de Vasconcelos ◽  
...  

AbstractThis study aimed to investigate the antimicrobial and biological properties of Ambroxol associated with glycerin (GLI), propylene glycol (PG), and polyethylene glycol (PEG) as a possible vehicle for an experimental tricalcium silicate sealer, with the intention of developing a new biomaterial. Mouse undifferentiated dental pulp cells (OD-21) were cultured, and the effects of different association on cell proliferation and inflammatory cytokine production were investigated. Antimicrobial adhesion of Enterococcus faecalis to setting sealers at 2 h was evaluated. Polyethylene tubes containing experimental sealers and empty tubes were implanted into dorsal connective tissues of 12 male 3- to 4-months-old Wistar rats (250–280 g). After 7 and 30 days, the tubes were removed and processed for histological and immunohistochemical analyses. ANOVA followed by Bonferroni correction and ANOVA followed by Tukey test was used for parametric data and Kruskal–Wallis followed by Dunn for nonparametric (p < 0.05). Cell proliferation was dose-dependent, since all association were cytotoxic at higher concentrations; however, Ambroxol–PEG showed significantly higher cytotoxicity than other association (p < 0.05). In addition, irrespective of the association, no cytokine production was observed in vitro. Ambroxol–GLI reduced bacterial viability, whereas Ambroxol–PEG increased (p < 0.05). Histological examination showed no significant difference in the inflammatory response (p > 0.05) and mineralization ability in all association. Additionally, IL-1β and TNF-α were upregulated on Ambroxol–PEG in relation to Control at 07 days (p < 0.05). Ambroxol–GLI was the best vehicle for experimental tricalcium silicate sealer, as it promoted an increase in antimicrobial activity without altering the inflammatory response or mineralization ability.


Molecules ◽  
2021 ◽  
Vol 26 (21) ◽  
pp. 6550
Author(s):  
Vladislav I. Deigin ◽  
Julia E. Vinogradova ◽  
Dmitry L Vinogradov ◽  
Marina S. Krasilshchikova ◽  
Vadim T. Ivanov

The paper summarizes the available information concerning the biological properties and biomedical applications of Thymodepressin. This synthetic peptide drug displays pronounced immunoinhibitory activity across a wide range of conditions in vitro and in vivo. The history of its unforeseen discovery is briefly reviewed, and the current as well as potential expansion areas of medicinal practice are outlined. Additional experimental evidence is obtained, demonstrating several potential advantages of Thymodepressin over another actively used immunosuppressor drug, cyclosporin A.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Hua-Jian Zhou ◽  
Shu-Hua Teng ◽  
Yi-Bo Zhou ◽  
Hai-Sheng Qian

A facile and green method was explored to prepare the tetracycline hydrochloride- (TCH-) loaded poly (ε-caprolactone)-chitosan-silica xerogel (PCL-CS-SiO2) hybrid fibers by using 90% acetic acid as a suitable solvent. The SEM results showed that those fibers exhibited a continuous, bead-free morphology, an average diameter of about 430 nm, and super-hydrophilicity ( θ water ≈ 0 ° ). The presence of SiO2 was found to enhance the thermal stability of the hybrid fibers, and the actual content of SiO2 was obtained by the TG measurement. Moreover, SiO2 xerogel as an important bioceramic endowed the hybrid fibers with good drug release behavior and in vitro bioactivity, suggesting their potential use as novel drug carriers for bone tissue engineering. The present work is expected to offer a green strategy to develop novel, multifunctional hybrid materials.


Blood ◽  
1993 ◽  
Vol 82 (3) ◽  
pp. 807-812
Author(s):  
MH Gilleece ◽  
TM Dexter

The humanized antibody CAMPATH-1H has been shown in pilot studies to be beneficial in the treatment of lymphoid malignancy and other lymphoproliferative diseases. The antigen recognized by this antibody is not confined to lymphoid cells, and work with rat antibodies of similar specificity has not eliminated the possibility of damage to human hematopoietic progenitors, particularly those capable of repopulating bone marrow and sustaining hematopoiesis. This study aimed to discover if hematopoietic progenitor cells were affected by treatment with CAMPATH-1H, with or without human complement. Bone marrow mononuclear cells from healthy volunteers were treated with saturating concentrations of CAMPATH-1H, human complement, or CAMPATH- 1H plus human complement. The CD34-positive fraction of the mononuclear cells was treated similarly. Residual progenitor activity was measured in the colony-forming unit-granulocyte, erythroid, monocyte, megakaryocyte assay and compared with untreated controls. There was no significant difference (at the 5% level) between treated and control cells. Mononuclear cells were divided into CAMPATH-1H-positive and CAMPATH-1H-negative fractions by fluorescein isothiocyanate-CAMPATH-1H labeling and fluorescence-activated cell sorter separation. Hematopoietic progenitors were predominantly found in the CAMPATH-1H- negative fraction. Furthermore, mononuclear cells treated with CAMPATH- 1H and complement were equivalent to controls in experiments that investigated the capacity of these cells to form hematopoietic foci in long-term cultures.


Nutrients ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 3095
Author(s):  
Ondrej Vesely ◽  
Simona Baldovska ◽  
Adriana Kolesarova

Stilbenoids are interesting natural compounds with pleiotropic in vitro and in vivo activity. Their well-documented biological properties include anti-inflammatory effects, anticancer effects, effects on longevity, and many others. Therefore, they are nowadays commonly found in foods and dietary supplements, and used as a part of treatment strategy in various types of diseases. Bioactivity of stilbenoids strongly depends on different types of factors such as dosage, food composition, and synergistic effects with other plant secondary metabolites such as polyphenols or vitamins. In this review, we summarize the existing in vitro, in vivo, and clinical data from published studies addressing the optimization of bioavailability of stilbenoids. Stilbenoids face low bioavailability due to their chemical structure. This can be improved by the use of novel drug delivery systems or enhancers, which are discussed in this review. Current in vitro and in vivo evidence suggests that both approaches are very promising and increase the absorption of the original substance by several times. However, data from more clinical trials are required.


Sign in / Sign up

Export Citation Format

Share Document