scholarly journals Evaluation of the Synergistic Antibacterial Effects of Fosfomycin in Combination with Selected Antibiotics against Carbapenem–Resistant Acinetobacter baumannii

2021 ◽  
Vol 14 (3) ◽  
pp. 185
Author(s):  
Ozioma F. Nwabor ◽  
Pawarisa Terbtothakun ◽  
Supayang P. Voravuthikunchai ◽  
Sarunyou Chusri

The spread of multi-drug resistant (MDR) pathogens and the lagging pace in the development of novel chemotherapeutic agents warrant the use of combination therapy as a reliable, cost-effective interim option. In this study, the synergistic effects of fosfomycin in combination with other antibiotics were assessed. Of the 193 isolates, 90.6% were non-susceptible to fosfomycin, with minimum inhibitory concentrations (MICs) of ≥128 µg/mL. Antibacterial evaluation of fosfomycin-resistant isolates indicated multi-drug resistance to various antibiotic classes. Combinations of fosfomycin with 12 commonly used antibiotics synergistically inhibited most fosfomycin-resistant isolates. The fractional inhibitory concentration index indicated that combining fosfomycin with either aminoglycosides, glycylcyclines, fluoroquinolones, or colistin resulted in 2- to 16-fold reduction in the MIC of fosfomycin. Time-kill kinetics further confirmed the synergistic bactericidal effects of fosfomycin in combination with either amikacin, gentamicin, tobramycin, minocycline, tigecycline, or colistin, with more than 99.9% reduction in bacterial cells. Fosfomycin-based combination therapy might serve as an alternative option for the treatment of MDR A. baumannii. Further steps including in vivo efficacy and toxicity in experimental models of infection are required prior to clinical applications.

2019 ◽  
Vol 74 (11) ◽  
pp. 3211-3216 ◽  
Author(s):  
Stephan Göttig ◽  
Denia Frank ◽  
Eleonora Mungo ◽  
Anika Nolte ◽  
Michael Hogardt ◽  
...  

Abstract Objectives The β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is active against KPC-producing Enterobacterales. Herein, we present molecular and phenotypic characterization of ceftazidime/avibactam resistance in KPC-3-producing Klebsiella pneumoniae that emerged in vivo and in vitro. Methods Sequence analysis of blaKPC-3 was performed from clinical and in vitro-generated ceftazidime/avibactam-resistant K. pneumoniae isolates. Time–kill kinetics and the Galleria mellonella infection model were applied to evaluate the activity of ceftazidime/avibactam and imipenem alone and in combination. Results The ceftazidime/avibactam-resistant clinical K. pneumoniae isolate revealed the amino acid change D179Y in KPC-3. Sixteen novel mutational changes in KPC-3 among in vitro-selected ceftazidime/avibactam-resistant isolates were described. Time–kill kinetics showed the emergence of a resistant subpopulation under selection pressure with either imipenem or ceftazidime/avibactam. However, combined selection pressure with imipenem plus ceftazidime/avibactam prevented the development of resistance and resulted in bactericidal activity. Concordantly, the G. mellonella infection model revealed that monotherapy with ceftazidime/avibactam is prone to select for resistance in vivo and that combination therapy with imipenem results in significantly better survival. Conclusions Ceftazidime/avibactam is a valuable antibiotic against MDR and carbapenem-resistant Enterobacterales. Based on time–kill kinetics as well as an in vivo infection model we postulate a combination therapy of ceftazidime/avibactam and imipenem as a strategy to prevent the development of ceftazidime/avibactam resistance in KPC-producing Enterobacterales in vivo.


2019 ◽  
Vol 63 (10) ◽  
Author(s):  
Seong Eun Kim ◽  
Hee Kyung Kim ◽  
Su-Mi Choi ◽  
Yohan Yu ◽  
Uh Jin Kim ◽  
...  

ABSTRACT The mortality rate associated with Vibrio vulnificus sepsis remains high. An in vitro time-kill assay revealed synergism between tigecycline and ciprofloxacin. The survival rate was significantly higher in mice treated with tigecycline plus ciprofloxacin than in mice treated with cefotaxime plus minocycline. Thus, combination treatment with tigecycline-ciprofloxacin may be an effective novel antibiotic regimen for V. vulnificus sepsis.


Cancers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1284 ◽  
Author(s):  
Guerini ◽  
Triggiani ◽  
Maddalo ◽  
Bonù ◽  
Frassine ◽  
...  

Anticancer treatment efficacy is limited by the development of refractory tumor cells characterized by increased expression and activity of mechanisms promoting survival, proliferation, and metastatic spread. The present review summarizes the current literature regarding the use of the anthelmintic mebendazole (MBZ) as a repurposed drug in oncology with a focus on cells resistant to approved therapies, including so called “cancer stem cells”. Mebendazole meets many of the characteristics desirable for a repurposed drug: good and proven toxicity profile, pharmacokinetics allowing to reach therapeutic concentrations at disease site, ease of administration and low price. Several in vitro studies suggest that MBZ inhibits a wide range of factors involved in tumor progression such as tubulin polymerization, angiogenesis, pro-survival pathways, matrix metalloproteinases, and multi-drug resistance protein transporters. Mebendazole not only exhibits direct cytotoxic activity, but also synergizes with ionizing radiations and different chemotherapeutic agents and stimulates antitumoral immune response. In vivo, MBZ treatment as a single agent or in combination with chemotherapy led to the reduction or complete arrest of tumor growth, marked decrease of metastatic spread, and improvement of survival. Further investigations are warranted to confirm the clinical anti-neoplastic activity of MBZ and its safety in combination with other drugs in a clinical setting.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 3304-3304 ◽  
Author(s):  
Mark Wunderlich ◽  
Fu-Sheng Chou ◽  
Mahesh Shrestha ◽  
Benjamin Mizukawa ◽  
James C. Mulloy

Abstract Abstract 3304 Although significant progress has been made in the treatment of leukemia, relapse continues to be a major problem, particularly in acute myeloid leukemia (AML). The prognosis for relapsed leukemia is poor, indicating an area for potential improvements. However, animal models to study the response of human AML to chemotherapeutics and subsequent relapse are lacking. Recently we developed an improved NOD/SCID mouse with IL2RG knockout and transgenic expression of myelo-supportive cytokines SCF, GM-CSF, and IL-3 (the NSGS mouse). This mouse is remarkable in its ability to accept human AML grafts more efficiently than all other available strains. When coupled with in vitro derived AML cells, the NSGS mouse allows for a more predictable AML model with shorter latency and smaller range of death than in other mouse strains, including NSG mice. Importantly, very low numbers of cells reliably generate fatal AML in roughly 40 days, even in non-irradiated NSGS mice, allowing for rapid experimental conclusions and reduced toxicity. With the benefits of these unique tools, we sought to develop a model system to evaluate the efficacy of chemotherapeutic agents on human AML cells in vivo. Engrafted mice received a chemotherapy regimen over a 5-day treatment period consisting of a daily dose of cytarabine with simultaneous injection of doxorubicin during the first three days. Treated mice experienced striking weight loss during the treatment period with a nadir at days 8–10 post-treatment. Mice recovered body weight within 3 weeks. Serial complete blood counts indicated a rapid transient drop in total white blood cell and neutrophil counts and a delayed transient drop in red blood cell and platelet numbers, reminiscent of the effects observed in patients undergoing chemotherapy. The drugs successfully targeted the cells of the bone marrow, as evidenced by a profound loss of cellularity in treated mice relative to controls. When mice harboring N-Ras(G12D) positive AML cells were treated at early time points post-transplant, a significant reduction of tumor burden was observed in the BM and PB, with the grafts of treated mice essentially undetectable for weeks after treatment cessation. Nevertheless, treated mice inevitably succumbed to disease, although with a significantly prolonged latency compared to mock treated mice. However, when AML cells containing the FLT3-ITD mutation were used, a shift in disease latency was not reproducibly seen. This data correlates well with patient data showing that FLT3-ITD mutant AML has a worse prognosis than AML samples with N-Ras mutations. Importantly, the reappearance of AML within weeks of treatment affords the opportunity to model drug resistance and relapse, as well as the potential synergistic effects of experimental compounds used in combination with traditional chemotherapy. Additionally, the period following treatment may allow for studies of minimal residual disease as well as the testing of potential maintenance therapies. Finally, this approach permits a detailed analysis of the critical few cancer stem cells that remain after induction therapy with the goal of identifying novel compounds capable of targeting these cells. Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 56 (1) ◽  
pp. 202-207 ◽  
Author(s):  
Mao Hagihara ◽  
Dora E. Wiskirchen ◽  
Joseph L. Kuti ◽  
David P. Nicolau

ABSTRACTPrevious studies employing time-kill methods have observed synergistic effects against methicillin-resistantStaphylococcus aureus(MRSA) when a β-lactam is combined with vancomycin. However, these time-kill studies have neglected the importance of human-simulated exposures. We evaluated the effect of human simulated exposures of vancomycin at 1 g every 8 h (q8h) in combination with cefazolin at 1 g q8h against various MRSA isolates. Four clinical isolates (two MRSA isolates [vancomycin MICs, 0.5 and 2.0 μg/ml], a heterogeneous vancomycin-intermediateS. aureus[hVISA] isolate [MIC, 2.0 μg/ml], and a vancomycin-intermediateS. aureus[VISA] isolate [MIC, 8.0 μg/ml]) were evaluated in anin vitropharmacodynamic model with a starting inoculum of 106or 108CFU/ml. Bacterial density was measured over 48 to 72 h. Time-kill curves were constructed, and the area under the bacterial killing and regrowth curve (AUBC) was calculated. During 106CFU/ml studies, combination therapy achieved greater log10CFU/ml changes than vancomycin alone at 12 h (−4.31 ± 0.58 versus −2.80 ± 0.59,P< 0.001), but not at 48 h. Combination therapy significantly reduced the AUBC from 0 to 48 h (122 ± 14) compared with vancomycin alone (148 ± 22,P= 0.017). Similar results were observed during 108CFU/ml studies, where combination therapy achieved greater log10CFU/ml changes at 12 h than vancomycin alone (−4.00 ± 0.20 versus −1.10 ± 0.04,P< 0.001) and significantly reduced the AUBC (275 ± 30 versus 429 ± 37,P< 0.001) after 72 h of incubation. In this study, the combination of vancomycin and cefazolin at human-simulated exposures improved the rate of kill against these MRSA isolates and resulted in greater overall antibacterial effect, but no differences in bacterial density were observed by the end of the experiments.


2019 ◽  
Author(s):  
Ryuichiro Abe ◽  
Hideharu Hagiya ◽  
Yukihiro Akeda ◽  
Norihisa Yamamoto ◽  
Yoshikazu Ishii ◽  
...  

Abstract Objective: Carbapenem-resistant Enterobacteriaceae (CRE) are among the most severe threats to public and clinical health because of their high levels of resistance to various antibiotics. We assessed the efficacy of combination therapy with meropenem (MEM) and cefmetazole (CMZ) against Imipenemase (IMP)-producing CRE, using the checkerboard method and time-killing assay on 13 Enterobacteriaceae isolates harboring blaIMP-1 (4 Enterobacter hormaechei, 5 Escherichia coli, and 4 Klebsiella pneumoniae isolates) and 13 isolates harboring blaIMP-6 (8 E. coli and 5 K. pneumoniae isolates). Results: Minimum inhibitory concentrations (MICs) of MEM and CMZ ranged from 2 to 64 and 64 to 2048 μg/mL, respectively. Checkerboard method demonstrated the synergy of the MEM/CMZ combination in all the tested IMP-producing CRE isolates, and the time-kill assay indicated a bactericidal effect for both blaIMP-1 and blaIMP-6 positive CRE when MEM/CMZ combination was used. In vitro, the MEM/CMZ combination was potentially effective against IMP-1- or IMP-6-producing CRE. Further investigations including in vivo animal studies and clinical studies are warranted to corroborate the clinical utility of the novel combination therapy.


2019 ◽  
Vol 63 (7) ◽  
Author(s):  
Youwen Zhang ◽  
Xiukun Wang ◽  
Xue Li ◽  
Limin Dong ◽  
Xinxin Hu ◽  
...  

ABSTRACT As increasing numbers of colistin-resistant bacteria emerge, new therapies are urgently needed to treat infections caused by these pathogens. The discovery of new combination therapies is one important way to solve such problems. Here, we report that the antitumor drug PFK-158 and its analogs PFK-015 and 3PO can exert synergistic effects with colistin against colistin-resistant Enterobacteriaceae, including mcr-1-positive or high-level-colistin-resistant (HLCR) isolates, as shown by a checkerboard assay. The results of a time-kill assay revealed that colistin combined with PFK-158 continuously eliminated colistin-resistant Escherichia coli 13-43, Klebsiella pneumoniae H04, and Enterobacter cloacae D01 in 24 h. Images from scanning electron microscopy (SEM) at 5 h postinoculation confirmed the killing effect of the combination. Finally, in vivo treatment showed that PFK-158 had a better synergistic effect than its analogs. Compared to the corresponding rates after colistin monotherapy, the survival rates of systemically infected mice were significantly increased 30% or 60% when the mice received an intravenous injection of colistin in combination with 15 mg/kg of body weight PFK-158. These results have important implications for repurposing PFK-158 to combat colistin resistance.


Author(s):  
Lokanatha Oruganti ◽  
Balaji Meriga

Background: Scientific research continues to develop more efficacious drugs to treat and cure cancer, the dreadful disease threatening the human race. Chemotherapy is an essential means in cancer therapy, however, plant drugs having pharmacological safety, can be used alone or as additions to current chemotherapeutic agents to enhance therapeutic efficacy and minimize chemotherapy-induced adverse effects. Objective: A combination therapy where the synergistic effect on multiple targets is possible has gained significance, because since a one-drug one-target approach fails to yield the desired therapeutic effect. Therefore, a detailed description of important plant polyphenolic compounds with anticancer activity and their role in potentiating chemotherapeutic efficiency of existing anticancer drugs is provided in this review. Systematically screening combinations of active pharmaceutical ingredients for potential synergy with plant compounds may be especially valuable in cancer therapy. Methodology: We extensively have gone through reviews and research articles available in the literature. We made use of databases such as Google Scholar, Research Gate, PubMed, Science Direct, etc. The following keywords were used in our literature search: “Chemotherapy, drug development, cancer drugs, plant-derived polyphenolics, synergistic studies, combination therapy, diagnosis and genetics.” Conclusion: Systematic research studies on screening combinations of plant phytochemicals with potential chemotherapeutic pharmaceuticals throws light on their synergistic effects, mechanisms of actions paving the way to develop more efficient anticancer therapeutics to treat and cure the cancer menace, to nullify chemotherapy-induced adverse effects and our review substantially contributes in this direction.


Author(s):  
Wentao Ni ◽  
Deqing Yang ◽  
Jie Guan ◽  
Wen Xi ◽  
Dexun Zhou ◽  
...  

Abstract Objectives Carbapenem-resistant Klebsiella pneumoniae (CR-KP) infections represent severe threats to public health worldwide. The aim of this study was to assess potential synergistic interaction between tigecycline and aminoglycosides via in vitro and in vivo studies. Methods Antibiotic resistance profiles and molecular characteristics of 168 CR-KP clinical isolates were investigated by susceptibility testing, PCR and MLST. Chequerboard tests and time–kill assays were performed for 20 CR-KP isolates to evaluate in vitro synergistic effects of tigecycline combined with aminoglycosides. A tissue-cage infection model of rats was established to evaluate in vivo synergistic effects. Different doses of tigecycline and aminoglycosides alone or in combination were administered for 7 days via tail vein injection. Antibiotic efficacy was evaluated in tissue-cage fluid and emergence of resistance was screened. Results The chequerboard tests showed that this combination displayed synergistic or partial synergistic activity against CR-KP. The time–kill assays further demonstrated that strong synergistic effects of such a combination existed against isolates that were susceptible to both drugs but for resistant isolates no synergy was observed if clinical pharmacokinetics were taken into consideration. The in vivo study showed that the therapeutic effectiveness of combination therapies was better than that of monotherapy for susceptible isolates, suggesting in vivo synergistic effects. Furthermore, combinations of tigecycline with an aminoglycoside showed significant activity in reducing the occurrence of tigecycline-resistant mutants. Conclusions Compared with single drugs, tigecycline combined with aminoglycosides could exert synergistic effects and reduce the emergence of tigecycline resistance. Such a combination might be an effective alternative when treating CR-KP infections in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document