scholarly journals Exosomes in Dogs and Cats: An Innovative Approach to Neoplastic and Non-Neoplastic Diseases

2021 ◽  
Vol 14 (8) ◽  
pp. 766
Author(s):  
Emanuela Diomaiuto ◽  
Valeria Principe ◽  
Adriana De Luca ◽  
Flaviana Laperuta ◽  
Chiara Alterisio ◽  
...  

Exosomes are extracellular vesicles with a diameter between 40 and 120 nm, which are derived from all types of cells and released into all biological fluids, such as blood plasma, serum, urine, breast milk, colostrum, and more. They contain proteins, nucleic acids (mRNA, miRNA, other non-coding RNA, and DNA), and lipids. Exosomes represent a potentially accurate footprint of the miRNA profile of the parental cell and can therefore be proposed as potential and sensitive biomarkers, both in diagnosing and monitoring a variety of diseases in humans and animals. Liquid biopsy offers itself as a non-invasive or minimally invasive, pain-free, time-saving alternative to conventional tissue biopsy. Exosomes in both human and veterinary medicine find their major application in neoplastic diseases, but applications in the field of veterinary cardiology, nephrology, reproduction, parasitology, and regenerative medicine are currently being explored. Exosomes can therefore be used as diagnostic, prognostic, and, in some cases, therapeutic tools for several conditions. The aim of this review was to assess the current applications of exosomes in veterinary medicine, particularly in dog and cat patients.

2020 ◽  
Vol 16 ◽  
pp. 174480692095780
Author(s):  
Simona D’Agnelli ◽  
Maria C Gerra ◽  
Elena Bignami ◽  
Lars Arendt-Nielsen

Exosomes are extracellular microvesicles implicated in intercellular communication with ability to transfer cargo molecules, including protein, lipids, and nucleic acids, at both close and distant target sites. It has been shown that exosomes are implicated in physiological and pathological processes. In recent years, the interest on exosomes’ role in many pain states has increased. Their involvements in pain processes have been demonstrated by studies on different chronic pain diseases, both inflammatory and neuropathic, such as osteoarthritis, rheumatoid arthritis, inflammatory bowel diseases, neurodegenerative pathologies, complex regional pain syndrome, and peripheral nerve injury. Animal and clinical studies investigated exosomes-based treatments, showing their ability to improve painful symptoms with fewer side effects, with potential immunoprotective and anti-inflammatory effect. Specific molecular patterns characterize exosomes’ cargo according to the cellular origin, epigenetic modifications, environmental state, and stressor factors. Therefore, the identification of specific cargo’s profile associated to pain states may lead to recognize specific pathological states and to consider the use of exosomes as biomarkers of diseases. Furthermore, exosomes’ ability to transfer information and their presence in many accessible biological fluids suggest a potential use as novel non-invasive therapeutic tools in pain field.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 145
Author(s):  
Ashley K. Putman ◽  
G. Andres Contreras ◽  
Lorraine M. Sordillo

Oxidative stress has been associated with many pathologies, in both human and animal medicine. Damage to tissue components such as lipids is a defining feature of oxidative stress and can lead to the generation of many oxidized products, including isoprostanes (IsoP). First recognized in the early 1990s, IsoP are formed in numerous biological fluids and tissues, chemically stable, and easily measured by noninvasive means. Additionally, IsoP are highly specific indicators of lipid peroxidation and thereby are regarded as excellent biomarkers of oxidative stress. Although there have been many advancements in the detection and use of IsoP as a biomarker, there is still a paucity of knowledge regarding the biological activity of these molecules and their potential roles in pathology of oxidative stress. Furthermore, the use of IsoP has been limited in veterinary species thus far and represents an avenue of opportunity for clinical applications in veterinary practice. Examples of clinical applications of IsoP in veterinary medicine include use as a novel biomarker to guide treatment recommendations or as a target to mitigate inflammatory processes. This review will discuss the history, biosynthesis, measurement, use as a biomarker, and biological action of IsoP, particularly in the context of veterinary medicine.


Doctor Ru ◽  
2021 ◽  
Vol 20 (8) ◽  
pp. 12-18
Author(s):  
G.V. Savostina ◽  
◽  
S.G. Perminova ◽  
A.V. Timofeeva ◽  
M.A. Veyukova ◽  
...  

Objective of the Review: To analyse the modern methods for assessment of the implantation potential of embryos in assisted reproductive programs. Key Points. We present the study results for selection of a most optimal embryo for transfer, using visual assessment of embryo quality, preimplantation genetic aneuploidy testing, analysis of metabolomic, proteomic, transcriptomic profiles of culture media and embryo blastocele. We have paid special attention to assessment of small non-coding RNA (sncRNA) in embryo culture medium. Conclusion. Due to the high sensitivity, objectivity and biomarker resistance to degradation, the most promising non-invasive method to assess the implantation potential of an embryo is analysis of the sncRNA profile in embryo culture media. Keywords: aneuploidy, pre-implantation genetic testing, small non-coding RNAs, proteomic analysis, metabolomic analysis.


Membranes ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 128 ◽  
Author(s):  
Yan Lyu ◽  
Shiyu Gan ◽  
Yu Bao ◽  
Lijie Zhong ◽  
Jianan Xu ◽  
...  

Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs. We review recent advances in SC-ISEs including the response mechanism (redox capacitance and electric-double-layer capacitance mechanisms) and crucial solid transducer materials (conducting polymers, carbon and other nanomaterials) and applications in wearable sensors. At the end of the review we illustrate the existing challenges and prospects for future SC-ISEs. We expect this review to provide readers with a general picture of SC-ISEs and appeal to further establishing protocols for evaluating SC-ISEs and accelerating commercial wearable sensors for clinical diagnosis and family practice.


2009 ◽  
Vol 29 (8) ◽  
pp. 703-714 ◽  
Author(s):  
Susan Sumner ◽  
Rodney Snyder ◽  
Jason Burgess ◽  
Christina Myers ◽  
Rochelle Tyl ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenqian Wang ◽  
Chenran Yue ◽  
Sheng Gao ◽  
Shuting Li ◽  
Jianan Zhou ◽  
...  

Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterized by the loss of immune tolerance. Lupus nephritis (LN) is still a major cause of the morbidity and mortality of SLE. In clinical practice, diagnosis, and therapy of SLE is complicated and challenging due to lack of ideal biomarkers. Exosomes could be detected from numerous kinds of biological fluids and their specific contents are considered as hallmarks of autoimmune diseases. The exosomal miRNA profiles of SLE/LN patients significantly differ from those of the healthy controls making them as attractive biomarkers for renal injury. Exosomes are considered as optimal delivery vehicles owing to their higher stable, minimal toxicity, lower immunogenicity features and specific target effects. Endogenous miRNAs can be functionally transferred by exosomes from donor cells to recipient cells, displaying their immunomodulatory effects. In addition, it has been confirmed that exosomal miRNAs could directly interact with Toll-like receptors (TLRs) signaling pathways to regulate NF-κB activation and the secretion of inflammatory cytokines. The present Review mainly focuses on the immunomodulatory effects of exosomal-miRNAs, the complex interplay between exosomes, miRNAs and TLR signaling pathways, and how the exosomal-miRNAs can become non-invasive diagnostic molecules and potential therapeutic strategies for the management of SLE.


2019 ◽  
Vol 9 (3) ◽  
pp. 234-238
Author(s):  
I. F. Gareev ◽  
O. A. Beylerli ◽  
Sh. Zhao ◽  
G. Yang ◽  
J. Sun ◽  
...  

Introduction. Glioblastoma multiforme (GBM) is the most common and aggressive form of primary malignant brain tumour in adults associated with a poor prognosis. Exosomes have been shown to be useful non-invasive biomarkers for the diagnosis and prognosis of tumours, GBM included. Exosomes play a role of biological carriers which can perform various tasks through various signalling pathways of carcinogenesis, such as PI3K/AKT, SOX2, PTEN, ERK and STAT3.Materials and methods. Exosomes were isolated from blood plasma taken from patients diagnosed with GBM prior to surgical resection.Results and discussion. Plasma exosomes from patients with GBM had spherical shape and varied in size from 40 to 100 nm matching the exosomes’ morphological characteristics. The combination of ultrafiltration and double ultracentrifugation makes it possible to extract exosome examples from plasma without the presence of contaminating particles over 100 nm in size; the shape and size of these vesicles match the characteristics of exosomes isolated from other biological fluids.Conclusion. The experimental protocol for the extraction of exosomes from GBM patients’ plasma described here proves effective as a method used to ensure the purity of exosomes. Applying this method offers further opportunities for research into the role of exosomes in GBM pathogenesis. Equally this method can be used in research involving other human pathologies.


Author(s):  
Niccolò Alfano ◽  
Anisha Dayaram ◽  
Jan Axtner ◽  
Kyriakos Tsangaras ◽  
Marie-Louise Kampmann ◽  
...  

ABSTRACTEnvironmental DNA (eDNA) and invertebrate-derived DNA (iDNA) have been used to survey biodiversity non-invasively to mitigate difficulties of obtaining wildlife samples, particularly in remote areas or for rare species. Recently, eDNA/iDNA have been applied to monitor known wildlife pathogens, however, most wildlife pathogens are unknown and often evolutionarily divergent.To detect and identify known and novel mammalian viruses from eDNA/iDNA sources, we used a curated set of RNA oligonucleotides as viral baits in a hybridization capture system coupled with high throughput sequencing.We detected multiple known and novel mammalian RNA and DNA viruses from multiple viral families from both waterhole eDNA and leech derived iDNA. Congruence was found between detected hosts and viruses identified in leeches and waterholes.Our results demonstrate that eDNA/iDNA samples represent an effective non-invasive resource for studying wildlife viral diversity and for detecting novel potentially zoonotic viruses prior to their emergence.


Author(s):  
Malak Haidar ◽  
Gordon Langlsey

MicroRNAs (miRNAs) are small non-coding RNA molecules that play critical roles in human disease. Several miRnome profiling studies have identified miRNAs deregulated in cancer and infectious diseases and miRNAs are also involved in regulation of the host response to infection. Thereby, the usage of miRNAs as biomarkers and potential treatments for both human and infectious diseases is under development. This review will provide insights into the contribution of miRNAs to pathogenesis and disease development and will present a general outline of the potential use of miRNAs as therapeutic tools.


2021 ◽  
Vol 19 (3) ◽  
pp. 171-174
Author(s):  
A. V. Mitronin ◽  
O. A. Khvorostenko ◽  
D. A. Ostanina ◽  
Yu. A. Mitronin

The search for new, fast and non-invasive methods of diagnosing diseases of both the oral cavity and general diseases of various etiologies and their introduction into practical health care is still a priority in the field of medicine. Among the known methods of analysis of biological fluids, a special place is occupied by the study of saliva. Oral fluid analysis has a high potential in screening for various diseases, since it contains a wide range of organic and inorganic compounds. A significant number of works have been devoted to the study of the quantitative and qualitative composition of the oral fluid, as well as to the study of saliva biomarkers, however, the study of the saliva proteome is at the stage of data accumulation. The lack of standardization in the collection of samples and methods of analysis, as well as poorly studied physiological and biochemical parameters of the oral fluid, hinders the introduction of advances in the study of the saliva proteome into diagnostic practice. The solution of these problems will allow the oral fluid to be used as a biological environment for both detecting diseases and predicting their course.


Sign in / Sign up

Export Citation Format

Share Document