scholarly journals Ionic Polymethacrylate Based Delivery Systems: Effect of Carrier Topology and Drug Loading

Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 337 ◽  
Author(s):  
Dorota Neugebauer ◽  
Anna Mielańczyk ◽  
Rafał Bielas ◽  
Justyna Odrobińska ◽  
Maria Kupczak ◽  
...  

The presented drug delivery polymeric systems (DDS), i.e., conjugates and self-assemblies, based on grafted and star-shaped polymethacrylates have been studied for the last few years in our group. This minireview is focused on the relationship of polymer structure to drug conjugation/entrapment efficiency and release capability. Both graft and linear polymers containing trimethylammonium groups showed the ability to release the pharmaceutical anions by ionic exchange, but in aqueous solution they were also self-assembled into nanoparticles with encapsulated nonionic drugs. Star-shaped polymers functionalized with ionizable amine/carboxylic groups were investigated for drug conjugation via ketimine/amide linkers. However, only the conjugates of polybases were water-soluble, giving opportunity for release studies, whereas the self-assembling polyacidic stars were encapsulated with the model drugs. Depending on the type of drug loading in the polymer matrix, their release rates were ordered as follows: Physical ≥ ionic > covalent. The studies indicated that the well-defined ionic polymethacrylates, including poly(ionic liquid)s, are advantageous for designing macromolecular carriers due to the variety of structural parameters, which are efficient for tuning of drug loading and release behavior in respect to the specific drug interactions.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Rafał Bielas ◽  
Anna Mielańczyk ◽  
Magdalena Skonieczna ◽  
Łukasz Mielańczyk ◽  
Dorota Neugebauer

Abstract New type of carriers based on grafted poly(ionic liquid)s was designed for delivery of ionically attached salicylates (Sal). Choline derived ionic liquid monomeric units were successfully introduced with various content in the side chains by the controlled radical polymerization. Properly high amounts of ionic pharmaceutics in the polymer systems were achieved by the well-fitted length and grafting degree of the side chains. In aqueous solution the graft copolymers were self-assembled into the spherical superstructures with sizes up to 73 nm. Delivery studies showed “burst” release within 4 h, after that it was slower yielding ~70% of released drug within 80 h. Proposed nanocarriers supported low toxicity against human cells (NHDF and BEAS-2B), anti-inflammation activity evaluated with the use of pro-inflammatory interleukins (IL-6 and IL-8) and antibacterial activities towards E. coli. Adjustment of ionic drug content by structural parameters of graft copolymers, including grafting degree and graft length, are advantageous to tailor nanocarriers with self-assembly properties in aqueous media. Effective release process by ionic exchange and biological activity with low toxicity are promising for further development of this type of drug delivery (DDS).


2007 ◽  
Vol 121-123 ◽  
pp. 751-754 ◽  
Author(s):  
Garnpimol C. Ritthidej ◽  
W. Pichayakorn ◽  
Chulalongkorn Kusonwiriyawong ◽  
V. Lipipun

The purpose of this study was to prepare chitosan nanoparticles (CS NP) for controlled protein delivery. Two techniques, simple ionotropic gelation (method [I]) and w/o/w emulsion solvent evaporation containing ionotropic gelation (method [II]), were used to prepare CS NP. Tripolyphosphate (TPP) and Eudragit L100-55 (Eud) were used as anionic agents to form complex with cationic chitosan. Bovine serum albumin (BSA) was encapsulated into NP. The morphological characteristics, particle size and size distribution, protein entrapment efficiency, zeta potential, in vitro release, protein secondary structure and its integrity were investigated. The results showed that CS NP could be prepared by appropriate cationic and anionic ratios in both methods. Excess anionic agents resulted in particle aggregation of micron size. The median sizes of particles were between 0.127-0.273 mcm with method [I] provided the smallest size. The 0.02-0.10% BSA loaded preparations showed the same particle sizes and size distributions as blank preparations. SEM photomicrographs revealed that the obtained NP were spherical. Protein entrapment efficiency was between 47-84% and increased when decreasing the percentage of drug loading. The method [II] with TPP exhibited the highest protein entrapment efficiency, following by the method [II] with Eud and method [I] with TPP, respectively. The zeta potentials were positive. Prolonged in vitro protein release profiles were observed from all preparations of CS NP. After 10 days, the release was between 53-72%. Circular dichroism and SDS-polyaceylamide gel electrophoresis techniques confirmed that these processes did not have any destructive effect on the protein structure. Therefore these preparation techniques could be used to encapsulate water-soluble drugs, proteins, DNA, or antigens into CS NP as effective delivery carriers.


2021 ◽  
Vol 11 (5) ◽  
pp. 110-114
Author(s):  
Harshita Jain ◽  
Vivek Jain ◽  
Sunil Kumar Jain ◽  
Pushpendra Kumar Khangar

The guanine derivative antiviral drug acyclovir (ACV) is one of the oldest molecules put downing triumphant market until date, being commercially accessible in a variety of dosage forms for oral, topical and parenteral administrations. Clinical purpose of this drug is better to new antiviral agents due to its potential values such as suppression of recurrence, security profile, negligible drug interactions and being inexpensive. ACV is slightly water soluble, less permeable and poorly bioavailable, yet further potential antiviral molecule, the physicochemical alterations and new dosage form approaches resulted with more than 100 research efforts within a decade. The current study endeavored at the formulation of chitosan microspheres loaded with ACV to conquer the poor bioavailability and recurrent dose administration. Chitosan microspheres were prepared by emulsification technique by glutaraldehyde cross-linking. A variety of formulation and process variables such as polymer, glutaraldehyde, drug, span 80 concentrations, effect of stirring speed and stirring time were optimized. Formulated microspheres were characterized for its drug loading, invitro drug release, entrapment efficiency, surface morphology (SEM), particle size analysis and FTIR spectroscopy. The characterization of the fabricated microspheres demonstrated smooth surface with thin particle size allocation and entrapment efficiency of 80.8% for stirring speed batch. The prepared microspheres showed a controlled drug release of 93.2% over a period of 8 hrs with initial burst release of 56.7 % in the first 2hrs. The FTIR showed that there was no possible drug interaction among the drug and polymer. From the data’s obtained it can be concluded that the chitosan microspheres could be believed as a possible carrier for controlled drug delivery of ACV. Keywords: Acyclovir, Antiviral drug, Microspheres, Chitosan, Glutaraldehyde.


MRS Bulletin ◽  
1995 ◽  
Vol 20 (6) ◽  
pp. 22-25 ◽  
Author(s):  
Toyoki Kunitake

The two-dimensional packing of organic molecules (small and large) produces ultimately thin organic films. Several possibilities exist for achieving this result from linear polymers, taking advantage of surfaces and interfaces as spatial templates. Monomolecular polymer layers can be prepared on the surface of water by polymerization of monolayers. They can be transferred onto solid supports by the Langmuir-Blodgett-Kuhn technique. Polyion complexation at the air-water interface provides a second method of two-dimensional arrangements of linear polymers. More recent approaches include polymerization-induced epitaxy (PIE) and alternate polyion adsorption. In the case of PIE, growing polymer chains in solution are adsorbed onto immersed graphite plates, most probably as single polymer layers (Figure la). Chain alignment is commensurate with the graphite lattice, as confirmed by scanning tunneling microscopy (STM). This epitaxial adsorption is independent of polymerization mechanisms. On the other hand, the alternate adsorption consists of sequential dipping of charged solid supports in aqueous solutions of oppositely charged linear polyions (Figure 1b). The regularity of the layer thickness is remarkable and, under appropriate conditions, the deposition is repeatable without limit. This method is applicable not only to pairs of linear polyions but also to combinations of linear polyions with water-soluble proteins or inorganic nanoparticles.


Author(s):  
J M Shah ◽  
N.H Shah ◽  
Hadiya P D

Pharmaceutical technology has developed various newer modes of novel drug delivery aspects. Modifications in the previously existing drug delivery methods have led to various newly innovated technologies serving as a safe and effective means of improvement over the existing ones. Novasome technology is one of the new innovations of liposomes which have solved many of the problems related to liposomal drug delivery system. It offers a seven bilayer membrane which has the ability to incorporate both water soluble and insoluble drugs. It has an excellent entrapment efficiency which provides better medication. Formulation of novasomes is achieved in a high shear device. Due to its numerous advantages, novasomes have been used extensively in various fields like cosmetics, chemical, personal care, foods, pharmaceuticals and agrochemicals.


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2017 ◽  
Vol 23 (3) ◽  
pp. 467-480 ◽  
Author(s):  
Satyanarayan Pattnaik ◽  
Kamla Pathak

Background: Improvement of oral bioavailability through enhancement of dissolution for poorly soluble drugs has been a very promising approach. Recently, mesoporous silica based molecular sieves have demonstrated excellent properties to enhance the dissolution velocity of poorly water-soluble drugs. Description: Current research in this area is focused on investigating the factors influencing the drug release from these carriers, the kinetics of drug release and manufacturing approaches to scale-up production for commercial manufacture. Conclusion: This comprehensive review provides an overview of different methods adopted for synthesis of mesoporous materials, influence of processing factors on properties of these materials and drug loading methods. The drug release kinetics from mesoporous silica systems, the manufacturability and stability of these formulations are reviewed. Finally, the safety and biocompatibility issues related to these silica based materials are discussed.


Author(s):  
Poovi Ganesan ◽  
N Damodharan

Background: A better understanding of the biopharmaceutical and physicochemical properties of drugs and the pharmaco-technical factors would be of great help for developing pharmaceutical products. But, it is extremely difficult to study the effect of each variable and interaction among them through the conventional approach Objective: To screen the most influential factors affecting the particle size (PS) of lipid nanoparticle (LNPs) (solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC)) for poorly water-soluble BCS class-II drug like tamoxifen (TMX) to improve its oral bioavailability and to reduce its toxicity to tolerable limits using Taguchi (L12 (2 11)) orthogonal array design by applying computer optimization technique. Results: The size of all LNPs formulations prepared as per the experimental design varied between 172 nm and 3880 μm, polydispersity index between 0.033 and 1.00, encapsulation efficiency between 70.8% and 75.7%, and drug loading between 5.84% and 9.68%. The study showed spherical and non-spherical as well as aggregated and non-aggregated LNPs. Besides, it showed no interaction and amorphous form of the drug in LNPs formulation. The Blank NLCs exhibited no cytotoxicity on MCF-7 cells as compared to TMX solution, SLNs (F5) and NLCs (F12) suggests that the cause of cell death is primarily from the effect of TMX present in NLCs. Conclusions: The screening study clearly showed the importance of different individual factors significant effect for the LNPs formulation development and its overall performance in an in-vitro study with minimum experimentation thus saving considerable time, efforts, and resources for further in-depth study.


2020 ◽  
Vol 10 (4) ◽  
pp. 404-418
Author(s):  
Kruti Borderwala ◽  
Ganesh Swain ◽  
Namrata Mange ◽  
Jaimini Gandhi ◽  
Manisha Lalan ◽  
...  

Background: The objective of this study was to develop solid lipid nanoparticles (SLNs) of poorly water soluble anti-hyperlipidemic drugs-Ezetimibe in combination with Simvastatin. Methods: This study describes a 32 full factorial experimental design to optimize the formulation of drug loaded lipid nanoparticles (SLN) by the high speed homogenization technique. The independent variables amount of lipid (GMS) and amount of surfactant (Poloxamer 188) were studied at three levels and arranged in a 32 factorial design to study the influence on the response variables- particle size, % entrapment efficiency (%EE) and cumulative drug release (% CDR) at 24 h. Results: The particle size, % EE and % CDR at 24 h for the 9 batches (B1 to B9) showed a wide variation of 104.6-496.6 nm, 47.80-82.05% (Simvastatin); 48.60-84.23% (Ezetimibe) and 54.64-92.27% (Simvastatin); 43.8-97.1% (Ezetimibe), respectively. The responses of the design were analysed using Design Expert 10.0.2. (Stat-Ease, Inc, USA), and the analytical tools of software were used to draw response surface plots. From the statistical analysis of data, polynomial equations were generated. Optimized formulation showed particle size of 169.5 nm, % EE of 75.43% (Simvastatin); 79.10% (Ezetimibe) and 74.13% (Simvastatin); 77.11% (Ezetimibe) %CDR after 24 h. Thermal analysis of prepared solid lipid nanoparticles gave indication of solubilisation of drugs within lipid matrix. Conclusion: Fourier Transformation Infrared Spectroscopy (FTIR) showed the absence of new bands for loaded solid lipid nanoparticles indicating no interaction between drugs and lipid matrix and being only dissolved in it. Electron microscope of transmission techniques indicated sphere form of prepared solid lipid nanoparticles with smooth surface with size approximately around 100 nm.


Sign in / Sign up

Export Citation Format

Share Document