scholarly journals Mechanism and Improved Dissolution of Glycyrrhetinic Acid Solid Dispersion by Alkalizers

Pharmaceutics ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 82 ◽  
Author(s):  
Luning Dong ◽  
Yaping Mai ◽  
Qiang Liu ◽  
Wannian Zhang ◽  
Jianhong Yang

The purpose of this study was to increase the dissolution of glycyrrhetinic acid (GA) by preparing ternary solid dispersion (TSD) systems containing alkalizers, and to explore the modulating mechanism of alkalizers in solid dispersion systems. GA TSDs were prepared by hot melt extrusion (HME) with Kollidon® VA64 as the carrier and L-arginine/meglumine as the alkalizers. The in vitro release of the TSD was investigated with a dissolution test, and the dissociation constant (pKa) was used to describe the ionization degree of the drug in different pH buffers. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Fourier Transform Infrared Spectroscopy (FTIR), Raman spectra, X-ray photoelectron spectroscopy (XPS), and a molecular model were used for solid-state characterizations and to study the dissolution mechanism of the TSDs. It was evident that the dissolution of GA significantly increased as a result of the TSD compared to the pure drug and binary solid dispersion. SEM, DSC, and XPRD data showed that GA transformed into an amorphous form in TSD. As illustrated by FTIR, Raman, XPS, and molecular docking, high binding energy ion-pair complexes formed between GA and the alkalizers during the process of HME. These can destroy the H-bond between GA molecules. Further, intermolecular H-bonds formed between the alkalizers and Kollidon® VA64, which can increase the wettability of the drug. Our results will significantly improve the solubility and dissolution of GA. In addition, the lower pKa value of TSD indicates that higher ionization is beneficial to the dissolution of the drug. This study should facilitate further developments of TSDs containing alkalizers to improve the dissolution of weakly acidic drugs and gain a richer understanding of the mechanism of dissolution.

Author(s):  
M. Shah ◽  
D. Patel

Oxcarbazepine has low solubility and low oral bioavailability, so it’s a challenge to formulate suitable dosage form. In this present investigation, to improve the dissolution rate and solubility, skimmed milk is used as a carrier. Physical mixers were prepared using various drugs to carrier ratio and spray drying technology was used to develop solid dispersion with the carrier. Various techniques were used to characterize the solid dispersion immediately after they were made which includes differential scanning calorimetry, scanning electron microscopy, fourier transform infra- red spectroscopy, X-ray diffraction and in-vitro dissolution profiles. The differential scanning calorimetry thermograms of raw drug indicated of its anhydrous crystalline nature. In thermograms of solid dispersion, the characteristic peak was absent suggesting the change from crystalline nature to amorphous form. X-ray diffraction confirmed those results. X-ray diffraction results of raw drug showed highly intense peak characteristic of its crystalline nature where solid dispersion showed less intense, more diffused peak indicating the change in crystalline form. Fourier transforms infra-red spectroscopy studies showed there was no interaction between drug and carrier. Scanning electron microscopy support the amorphous nature of mixer. The whole formulation showed distinct enhancement in the drug release behavior and solubility. The optimum oxcarbazepine to skimmed milk ratio 1:3 enhances the in-vitro drug release by 3.5 fold and also show distinct increase in solubility. It was concluded that for improvement of solubility of poorly water soluble oxcarbazepine, skimmed milk powder as a carrier can be utilize very well.


2020 ◽  
Vol 88 (4) ◽  
pp. 52
Author(s):  
Mona Qushawy ◽  
Ali Nasr ◽  
Shady Swidan ◽  
Yasmin Mortagi

Glimepiride is an antidiabetic drug which is one of the third generation sulfonylureas. It belongs to class II, according to the BCS (Biopharmaceutical Classification System), which is characterized by low solubility and high permeability. The aim of this work was to formulate glimepiride as solid dispersion using water-soluble carriers to enhance its aqueous solubility and thus enhance its bioavailability. Nine formulations of glimepiride solid dispersion were prepared by a solvent evaporation technique using three different carriers (mannitol, polyethylene glycol 6000, and β-cyclodextrin) with three different drug carrier ratio (1:1, 1:3, and 1:6). Formulation variables were optimized using 32 full factorial design. The prepared formulations were evaluated for production yield, drug content, micromeritic properties, thermal analysis, in-vitro release, and in-vivo hypoglycemic effect. All prepared formulations showed high production yield ranged from 98.4 ± 2.8 to 99.8 ± 2.2% and high drug content in the range of 97.2 ± 3.2 to 99.6 ± 2.1%. The micromeritic properties revealed that all prepared glimepiride formulations showed good flowability. The differential scanning calorimetry study revealed the presence of the drug in the more soluble amorphous form. In accordance with the results of in vitro release study, it was found that the solubility of glimepiride was increased by increasing the drug carrier ratio, compared with the pure form of the drug. It was found that F9 showed a high and rapid reduction in blood glucose levels in diabetic rats, which indicated the success of a solid dispersion technique in improving the solubility and hence the bioavailability of glimepiride.


Pharmaceutics ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 235 ◽  
Author(s):  
Lyes Mehenni ◽  
Malika Lahiani-Skiba ◽  
Guy Ladam ◽  
François Hallouard ◽  
Mohamed Skiba

In the present study, new polymer microspheres of amphotericin B (AmB) were prepared by a spray drying technique using cyclodextrin polymers (Poly-CD) to improve the solubility and dissolution of AmB, to prevent in vivo toxic AmB aggregations. Formulations were characterized through scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermal analysis, Raman spectroscopy, particle size, drug purity test and in vitro release studies. The analysis indicated that the chemical structure of AmB remained unchanged in the amorphous solid dispersion, but the structure was changed from crystalline to amorphous. AmB was completely release from such optimized formulations in dissolution media in 40 min. This work may contribute to a new generation of spherical amorphous solid dispersion using a cyclodextrin polymer, which has implications for the possibility of drug development for oral utilization or as powder aerosols for pulmonary administration.


2019 ◽  
Vol 41 (1) ◽  
pp. 133-133
Author(s):  
Muhammad Zaman Muhammad Zaman ◽  
Muhammad Hanif Muhammad Hanif ◽  
Syed Saeed Ul Hassan Syed Saeed Ul Hassan ◽  
Javed Iqbal and Muhammad Ahmad Shehzad Javed Iqbal and Muhammad Ahmad Shehzad

The purpose of the current study was to enhance the solubility of the meloxicam (MLX) by preparing complex with β-Cyclodextrin (CD) and maltodextrin (MD). Dextrins have the ability to capture the drug inside their cavities without forming any chemical bonding. Three (3) formulations, each of solid dispersion (SD) and physical mixture (PM) were prepared by using different drug to polymer ratios (1:4, 1:6 and 1:8) followed by evaluation for micromeritic properties, drug contents, and in vitro drug release studies, scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and x-ray diffraction (XRD) studies. Chemical compatibility of the ingredients was evaluated by using Fourier transform infrared spectroscopy (FTIR). Results of conducted studies exposed excellent flow properties of SDs as well as prepared PMs, with reasonable amount of loaded drug, i.e. andgt;90%. SEM showed a bit irregular surface while XRD suggested crystalline behavior of pure drug, which was masked after its conversion into SDs and PMs based on dextrins. Solubility of the MLX was increased significantly form its initial extent of solubility i.e. 12.5 and#181;g/ml in pure form to 786.72 and#181;g/ml in the form of SD (pandlt;0.05), advocating suitability of materials and methods for solubility enhancement of MLX.


Author(s):  
Erizal Zaini ◽  
Salman Umar ◽  
Nurhidayah Nurhidayah

ABSTRACTObjective: To improve dissolution rate of valsartan from solid dispersion system of valsartan and D(−) mannitol using co-grinding approach.Methods: Valsartan solid dispersion with different ratio of D(−) mannitol (1:1; 1:3 and 1: 5) were prepared by co-grinding method. Solid statecharacterization of the solid dispersion system was evaluated in term of crystallographic properties (powder X-ray diffraction), thermal behavior(differential scanning calorimetry [DSC]) and morphology (scanning electron microscope). The profile of dissolution rate was examined using USPdissolution apparatus type I at a temperature of 37±0.5°C.Results: Based on thermal analysis DSC and powder X-ray diffraction analysis, valsartan was transformed from semicrystalline phase to amorphousstate as indicated by the disappearance of its melting endothermic peaks and the characteristic diffraction peaks. The in vitro dissolution rate studyrevealed that all solid dispersion system showed significant increase in dissolution rate compared with the intact valsartan.Conclusion: Solid dispersion of valsartan with D(−) mannitol prepared by co-grinding technique has successfully improved the dissolution ratecompared with intact valsartan.Keywords: Valsartan, D(−) mannitol, Solid dispersion, Co-grinding, Dissolution rate.


Author(s):  
Asma Azaruddin Mokashi ◽  
SNEHALATA L. GAIKWAD

Objective: Objective of the present investigation was to enhance the solubility and dissolution rate of poorly water-soluble drug lornoxicam using liquisolid technique with comparative determination of in vitro release profile of liquisolid compacts and conventional formulation of lornoxicam. Methods: Formulation was prepared by a liquisolid technique using different drug concentration in a liquid vehicle and different carrier/coating ratio. Prepared liquisolid compact was evaluated for Fourier transform infrared (FTIR) spectra analysis, differential scanning calorimetry (DSC), X-ray diffraction (P-XRD), scanning electron microscopy (SEM) and in vitro dissolution study. Results: The result showed that liquisolid compacts of lornoxicam displayed significantly higher drug release rate as compared to pure drug and conventional tablet prepared. The results of both DSC and X-ray crystallography indicated loss of crystallinity of the drug upon formulated into the liquisolid compact. Conclusion: Dissolution rate of the drug from liquisolid compacts was affected by changing the drug concentration and excipient ratio. The liquisolid technique appeared to be a promising approach for improving the dissolution of poorly soluble drug lornoxicam.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Alexandre Pancotti ◽  
Dener Pereira Santos ◽  
Dielly Oliveira Morais ◽  
Mauro Vinícius de Barros Souza ◽  
Débora R. Lima ◽  
...  

AbstractIn this study, we report the synthesis and characterization of NiFe2O4 and CoFe2O4 nanoparticles (NPs) which are widely used in the biomedical area. There is still limited knowledge how the properties of these materials are influenced by different chemical routes. In this work, we investigated the effect of heat treatment over cytotoxicity of cobalt and niquel ferrites NPs synthesized by sol-gel method. Then the samples were studied using transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), vibrating sample magnetometer (VSM), Fourier Transform Infrared Spectroscopy Analysis (FTIR), and X-ray fluorescence (XRF). The average crystallite sizes of the particles were found to be in the range of 20–35 nm. The hemocompatibility (erythrocytes and leukocytes) was checked. Cytotoxicity results were similar to those of the control test sample, therefore suggesting hemocompatibility of the tested materials.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1192
Author(s):  
Angela Abruzzo ◽  
Concettina Cappadone ◽  
Valentina Sallustio ◽  
Giovanna Picone ◽  
Martina Rossi ◽  
...  

The selection of an appropriate dressing for each type of wound is a very important procedure for a faster and more accurate healing process. So, the aim of this study was to develop innovative Spanish Broom and flax wound dressings, as alternatives to cotton used as control, with polymeric films containing glycyrrhetinic acid (GA) to promote wound-exudate absorption and the healing process. The different wound dressings were prepared by a solvent casting method, and characterized in terms of drug loading, water uptake, and in vitro release. Moreover, biological studies were performed to evaluate their biocompatibility and wound-healing efficacy. Comparing the developed wound dressings, Spanish Broom dressings with GA-loaded sodium hyaluronate film had the best functional properties, in terms of hydration ability and GA release. Moreover, they showed a good biocompatibility, determining a moderate induction of cell proliferation and no cytotoxicity. In addition, the wound-healing test revealed that the Spanish Broom dressings promoted cell migration, further facilitating the closure of the wound.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shafiq Ishak ◽  
Soumen Mandal ◽  
Han-Seung Lee ◽  
Jitendra Kumar Singh

AbstractLauric acid (LA) has been recommended as economic, eco-friendly, and commercially viable materials to be used as phase change materials (PCMs). Nevertheless, there is lack of optimized parameters to produce microencapsulated PCMs with good performance. In this study, different amounts of LA have been chosen as core materials while tetraethyl orthosilicate (TEOS) as the precursor solution to form silicon dioxide (SiO2) shell. The pH of precursor solution was kept at 2.5 for all composition of microencapsulated LA. The synthesized microencapsulated LA/SiO2 has been characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-Ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), and Transmission electron microscopy (TEM). The SEM and TEM confirm the microencapsulation of LA with SiO2. Thermogravimetric analysis (TGA) revealed better thermal stability of microencapsulated LA/SiO2 compared to pure LA. PCM with 50% LA i.e. LAPC-6 exhibited the highest encapsulation efficiency (96.50%) and encapsulation ratio (96.15%) through Differential scanning calorimetry (DSC) as well as good thermal reliability even after 30th cycle of heating and cooling process.


Sign in / Sign up

Export Citation Format

Share Document