scholarly journals Topical Nanoemulgel for the Treatment of Skin Cancer: Proof-of-Technology

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 902
Author(s):  
Sreeharsha Nagaraja ◽  
Girish Meravanige Basavarajappa ◽  
Mahesh Attimarad ◽  
Swati Pund

The present study is a mechanistic validation of ‘proof-of-technology’ for the effective topical delivery of chrysin nanoemulgel for localized, efficient treatment of melanoma-affected skin. Background: Currently available treatments for skin cancer are inefficient due to systemic side effects and poor transcutaneous permeation, thereby presenting a formidable challenge for the development of novel nanocarriers. Methods: We opted for a novel approach and formulated a nanocomplex system composed of hydrophobic chrysin dissolved in a lipid mix, which was further nanoemulsified in Pluronic® F-127 gel to enhance physicochemical and biopharmaceutic characteristics. Chrysin, a flavone extracted from passion flowers, exhibits potential anti-cancer activities; however, it has limited applicability due to its poor solubility. Pseudo-ternary phase diagrams were constructed to identify the best self-nanoemulsifying region by varying the compositions of oil, Caproyl® 90 surfactant, Tween® 80, and co-solvent Transcutol® HP. Chrysin-loaded nanoemulsifying compositions were characterized for various physicochemical properties. Results: This thermodynamically stable, self-emulsifying drug delivery system showed a mean droplet size of 156.9 nm, polydispersity index of 0.26, and viscosity of 9100 cps after dispersion in gel. Mechanical characterization using Texture Analyzer exhibited that the gel had a hardness of 487 g and adhesiveness of 500 g. Ex vivo permeation through rat abdominal skin revealed significant improvement in percutaneous absorption measured as flux, the apparent permeability coefficient, the steady-state diffusion coefficient, and drug deposition. In vitro cytotoxicity on A375 and SK-MEL-2 cell lines showed a significantly improved therapeutic effect, thus ensuring reduction in dose. The safety of the product was established through biocompatibility testing on the L929 cell line. Conclusion: Aqueous, gel-based, topical, nanoemulsified chrysin is a promising technology approach for effective localized transcutaneous delivery that will help reduce the frequency and overall dose usage and ultimately improve the therapeutic index.

Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3454
Author(s):  
Tamer A. Ismail ◽  
Tamer M. Shehata ◽  
Dalia I. Mohamed ◽  
Heba S. Elsewedy ◽  
Wafaa E. Soliman

Natural products have been extensively used for treating a wide variety of disorders. In recent times, Brucine (BRU) as one of the natural medications extracted from seeds of nux vomica, was investigated for its anticancer activity. As far as we know, this is the first study on BRU anticancer activity against skin cancer. Thus, the rational of this work was implemented to develop, optimize and characterize the anticancer activity of BRU loaded ethosomal gel. Basically, thin film hydration method was used to formulate BRU ethosomal preparations, by means of Central composite design (CCD), which were operated to construct (32) factorial design. Two independent variables were designated (phospholipid percentage and ethanol percentage) with three responses (vesicular size, encapsulation efficiency and flux). Based on the desirability function, one formula was selected and incorporated into HPMC gel base to develop BRU loaded ethosomal gel. The fabricated gel was assessed for all physical characterization. In-vitro release investigation, ex-vivo permeation and MTT calorimetric assay were performed. BRU loaded ethosomal gel exhibited acceptable values for the characterization parameters which stand proper for topical application. In-vitro release investigation was efficiently prolonged for 6 h. The flux from BRU loaded ethosome was enhanced screening optimum SSTF value. Finally, in-vitro cytotoxicity study proved that BRU loaded ethosomal gel significantly improved the anticancer activity of the drug against A375 human melanoma cell lines. Substantially, the investigation proposed a strong motivation for further study of the lately developed BRU loaded ethosomal gel as a prospective therapeutic strategy for melanoma treatment.


2019 ◽  
Vol 13 (2) ◽  
pp. 114-128 ◽  
Author(s):  
Gayatri Patel ◽  
Bindu K.N. Yadav

Background: The purpose of this study was to formulate, characterize and conduct in vitro cytotoxicity of 5-fluorouracil loaded polymeric electrospun nanofibers for the treatment of skin cancer. The patents on electrospun nanofibers (US9393216B2), (US14146252), (WO2015003155A1) etc. helped in the selection of polymers and method for the preparation of nanofibers. Methods: In the present study, the fabrication of nanofibers was done using a blend of chitosan with polyvinyl alcohol and processed using the electrospinning technique. 5-fluorouracil with known chemotherapeutic potential in the treatment of skin cancer was used as a drug carrier. 24-1 fractional factorial screening design was employed to study the effect of independent variables like the concentration of the polymeric solution, applied voltage (kV), distance (cm), flow rate (ml / hr) on dependent variables like % entrapment efficiency and fiber diameter. Results: Scanning electron microscopy was used to characterize fiber diameter and morphology. Results showed that the fiber diameter of all batches was found in the range of 100-200 nm. The optimized batch results showed the fiber diameter of 162.7 nm with uniform fibers. The tensile strength obtained was 190±37 Mpa. Further in vitro and ex vivo drug release profile suggested a controlled release mechanism for an extended period of 24 hr. The 5-fluorouracil loaded electrospun nanofibers were found to decrease cell viability up to ≥50% over 24 hr, with the number of cells dropping by ~ 10% over 48 hr. As the cell viability was affected by the release of 5-fluorouracil, we believe that electrospun nanofibers are a promising drug delivery system for the treatment of Basal Cell Carcinoma (BCC) skin cancer. Conclusion: These results demonstrate the possibility of delivering 5-Fluorouracil loaded electrospun nanofiber to skin with enhanced encapsulation efficiency indicating the effectiveness of the formulation for the treatment of basal cell carcinoma type of skin cancer.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4197-4205 ◽  
Author(s):  
J.M. Herbert ◽  
J.P. Hérault ◽  
A. Bernat ◽  
R.G.M. van Amsterdam ◽  
J.C. Lormeau ◽  
...  

Abstract SANORG 34006 is a new sulfated pentasaccharide obtained by chemical synthesis. It is an analog of the “synthetic pentasaccharide” (SR 90107/ ORG 31540) which represents the antithrombin (AT) binding site of heparin. SANORG 34006 showed a higher affinity to human AT than SR 90107/ORG 31540 (kd = 1.4 ± 0.3 v 48 ± 11 nmol/L), and it is a potent and selective catalyst of the inhibitory effect of AT on factor Xa (1,240 ± 15 anti–factor Xa U/mg v850 ± 27 anti-factor Xa U/mg for SR 90107/ORG 31540). In vitro, SANORG 34006 inhibited thrombin generation occurring via both the extrinsic and intrinsic pathway. After intravenous (IV) or subcutaneous (SC) administration to rabbits, SANORG 34006 displayed a long-lasting anti–factor Xa activity and inhibition of thrombin generation (TG) ex vivo. SANORG 34006 was slowly eliminated after IV or SC administration to rats, rabbits, and baboons, showed exceptionally long half-lives (between 9.2 hours in rats and 61.9 hours in baboons), and revealed an SC bioavailability near 100%. SANORG 34006 displayed antithrombotic activity by virtue of its potentiation of the anti–factor Xa activity of AT. It strongly inhibited thrombus formation in experimental models of thromboplastin/stasis-induced venous thrombosis in rats (IV) and rabbits (SC) (ED50values = 40.0 ± 3.4 and 105.0 ± 9.4 nmol/kg, respectively). The duration of its antithrombotic effects closely paralleled the ex vivo anti–factor Xa activity. SANORG 34006 enhanced rt-PA–induced thrombolysis and inhibited accretion of125I-fibrinogen onto a preformed thrombus in the rabbit jugular vein suggesting that concomitant use of SANORG 34006 during rt-PA therapy might be helpful in facilitating thrombolysis and preventing fibrin accretion onto the thrombus under lysis. Contrary to standard heparin, SANORG 34006 did not enhance bleeding in a rabbit ear incision model at a dose that equals 10 times the antithrombotic ED50 in this species and, therefore, exhibited a favorable therapeutic index. We suggest that SANORG 34006 is a promising compound in the treatment and prevention of various thrombotic diseases.


2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
Madhulika Singh ◽  
Shankar Suman ◽  
Yogeshwer Shukla

Skin cancer is still a major cause of morbidity and mortality worldwide. Skin overexposure to ultraviolet irradiations, chemicals, and several viruses has a capability to cause severe skin-related disorders including immunosuppression and skin cancer. These factors act in sequence at various steps of skin carcinogenesis via initiation, promotion, and/or progression. These days cancer chemoprevention is recognized as the most hopeful and novel approach to prevent, inhibit, or reverse the processes of carcinogenesis by intervention with natural products. Phytochemicals have antioxidant, antimutagenic, anticarcinogenic, and carcinogen detoxification capabilities thereby considered as efficient chemopreventive agents. Considerable efforts have been done to identify the phytochemicals which may possibly act on one or several molecular targets that modulate cellular processes such as inflammation, immunity, cell cycle progression, and apoptosis. Till date several phytochemicals in the light of chemoprevention have been studied by using suitable skin carcinogenicin vitroandin vivomodels and proven as beneficial for prevention of skin cancer. This revision presents a comprehensive knowledge and the main molecular mechanisms of actions of various phytochemicals in the chemoprevention of skin cancer.


2019 ◽  
Author(s):  
Macarena Siri ◽  
Maria Julieta Fernandez Ruocco ◽  
Estefanía Achilli ◽  
Malvina Pizzuto ◽  
Juan F. Delgado ◽  
...  

AbstractA γ–irradiated bovine albumin serum based nanoparticle was characterised structurally, and functionally. The nanoparticle was characterised by A.F.M, D.L.S, zeta potential, T.E.M., gel-electrophoresis, spectroscopy (UV-Vis, Fluorescence, FT-IR, and CD). Its stability was studied under adverse experimental conditions: pH values, chaotropic agents, and ionic strength and stability studies against time were mainly carried out by fluorescence spectroscopy following the changes in the tryptophan environment in the nanoparticle. Its function was studied by the interaction of the NP with the hydrophobic drug Emodin was studied. The binding and kinetic properties of the obtained complex were tested by biophysical methods as well as its toxicity in tumour cells.According to its biophysics, the nanoparticle is a spherical nanosized vehicle with a hydrodynamic diameter of 70 nm. Data obtained describe the nanoparticle alone as nontoxic for cancer cell lines. When combined with Emodin, the bioconjugate proved to be more active on MCF-7 and PC-3 cancer cell lines than the nanoparticle alone. No haemolytic activity was found when tested against ex vivo red blood cells. The stability of the albumin nanoparticle is based on a competition between short-range attraction forces and long-range repulsion forces. The nanoparticle showed similar behaviour as albumin against pH while improving its stability in urea and tween 80. It was stable up to 15 days and presented no protein degradation in solutions up to 2 M salt concentration. Significantly, the albumin aggregate preserves the main activity-function of albumin and improved characteristics as an excellent carrier of molecules.Graphical Abstract


Pharmaceutics ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 314 ◽  
Author(s):  
Itxaso Garcia-Orue ◽  
Edorta Santos-Vizcaino ◽  
Alaitz Etxabide ◽  
Jone Uranga ◽  
Ardeshir Bayat ◽  
...  

In the current study, we developed a novel gelatin-based bilayer wound dressing. We used different crosslinking agents to confer unique properties to each layer, obtaining a bioinspired multifunctional hydrofilm suitable for wound healing. First, we produced a resistant and non-degradable upper layer by lactose-mediated crosslinking of gelatin, which provided mechanical support and protection to overall design. For the lower layer, we crosslinked gelatin with citric acid, resulting in a porous matrix with a great swelling ability. In addition, we incorporated chitosan into the lower layer to harness its wound healing ability. FTIR and SEM analyses showed that lactose addition changed the secondary structure of gelatin, leading to a more compact and smoother structure than that obtained with citric acid. The hydrofilm was able to swell 384.2 ± 57.2% of its dry weight while maintaining mechanical integrity. Besides, its water vapour transmission rate was in the range of commercial dressings (1381.5 ± 108.6 g/m2·day). In vitro, cytotoxicity assays revealed excellent biocompatibility. Finally, the hydrofilm was analysed through an ex vivo wound healing assay in human skin. It achieved similar results to the control in terms of biocompatibility and wound healing, showing suitable characteristics to be used as a wound dressing.


2009 ◽  
Vol 29 (8) ◽  
pp. 2168-2180 ◽  
Author(s):  
Hong Seok Choi ◽  
Ann M. Bode ◽  
Jung-Hyun Shim ◽  
Sung-Young Lee ◽  
Zigang Dong

ABSTRACT The c-Jun N-terminal kinase (JNK) signaling pathway is known to mediate both survival and apoptosis of tumor cells. Although JNK1 and JNK2 have been shown to differentially regulate the development of skin cancer, the underlying mechanistic basis remains unclear. Here, we demonstrate that JNK1, but not JNK2, interacts with and phosphorylates Myt1 ex vivo and in vitro. UVA induces substantial apoptosis in JNK wild-type (JNK +/+) or JNK2-deficient (JNK2 −/−) mouse embryonic fibroblasts but has no effect on JNK1-deficient (JNK1 −/−) cells. In addition, UVA-induced caspase-3 cleavage and DNA fragmentation were suppressed by the knockdown of human Myt1 in skin cancer cells. JNK1 deficiency results in suppressed Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA irradiation. In contrast, the absence of JNK2 induces Myt1 phosphorylation and caspase-3 cleavage in skin exposed to UVA. The overexpression of JNK1 with Myt1 promotes cellular apoptosis during the early embryonic development of Xenopus laevis, whereas the presence of JNK2 reduces the phenotype of Myt1-induced apoptotic cell death. Most importantly, JNK1 −/− mice developed more UVA-induced papillomas than either JNK +/+ or JNK2 −/− mice, which was associated with suppressed Myt1 phosphorylation and decreased caspase-3 cleavage. Taken together, these data provide mechanistic insights into the distinct roles of the different JNK isoforms, specifically suggesting that the JNK1-mediated phosphorylation of Myt1 plays an important role in UVA-induced apoptosis and the prevention of skin carcinogenesis.


2021 ◽  
Vol 9 (7) ◽  
pp. e002267
Author(s):  
Yaya Chu ◽  
Gaurav Nayyar ◽  
Susiyan Jiang ◽  
Jeremy M. Rosenblum ◽  
Patrick Soon-Shiong ◽  
...  

BackgroundChildren with recurrent and/or metastatic osteosarcoma (OS), neuroblastoma (NB) and glioblastoma multiforme (GBM) have a dismal event-free survival (<25%). The majority of these solid tumors highly express GD2. Dinutuximab, an anti-GD2 monoclonal antibody, significantly improved event-free survival in children with GD2+ NB post autologous stem cell transplantation and enhanced natural killer (NK) cell-mediated antibody-dependent cell cytotoxicity. Thus, approaches to increase NK cell number and activity, improve persistence and trafficking, and enhance tumor targeting may further improve the clinical benefit of dinutuximab. N-803 is a superagonist of an interleukin-15 (IL-15) variant bound to an IL-15 receptor alpha Su-Fc fusion with enhanced biological activity.MethodsThe anti-tumor combinatorial effects of N-803, dinutuximab and ex vivo expanded peripheral blood NK cells (exPBNK) were performed in vitro using cytoxicity assays against GD2+ OS, NB and GBM cells. Perforin and interferon (IFN)-γ levels were measured by ELISA assays. Multiple cytokines/chemokines/growth factors released were measured by multiplex assays. Human OS, GBM or NB xenografted NOD/SCID/IL2rγnull (NSG) mice were used to investigate the anti-tumor combinatorial effects in vivo.ResultsN-803 increased the viability and proliferation of exPBNK. The increased viability and proliferation are associated with increased phosphorylation of Stat3, Stat5, AKT, p38MAPK and the expression of NK activating receptors. The combination of dinutuximab and N-803 significantly enhanced in vitro cytotoxicity of exPBNK with enhanced perforin and IFN-γ release against OS, GBM and NB. The combination of exPBNK+N-803+dinutuximab significantly reduced the secretion of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), platelet-derived growth factor-BB (PDGF-BB), and stem cell growth factor beta (SCGF-β) from OS or GBM tumor cells. Furthermore, OS or GBM significantly inhibited the secretion of regulated on activation, normal T cell expressed and presumably secreted (RANTES) and stromal cell-derived factor-1 alpha (SDF-1α) from exPBNK cells (p<0.001) but significantly enhanced monokine induced by gamma interferon (MIG) secretion from exPBNK cells (p<0.001). N-803 combined with dinutuximab and exPBNK cells significantly extended the survival of OS, GBM or NB xenografted NSG mice.ConclusionsOur results provide the rationale for the development of a clinical trial of N-803 in combination with dinutuximab and ex vivo exPBNK cells in patients with recurrent or metastatic GD2+ solid tumors.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2126
Author(s):  
Georgia Pennarossa ◽  
Teresina De Iorio ◽  
Fulvio Gandolfi ◽  
Tiziana A. L. Brevini

Ovarian failure is the most common cause of infertility. Although numerous strategies have been proposed, a definitive solution for recovering ovarian functions and restoring fertility is currently unavailable. One innovative alternative may be represented by the development of an “artificial ovary” that could be transplanted in patients for re-establishing reproductive activities. Here, we describe a novel approach for successful repopulation of decellularized ovarian bioscaffolds in vitro. Porcine whole ovaries were subjected to a decellularization protocol that removed the cell compartment, while maintaining the macrostructure and microstructure of the original tissue. The obtained bioscaffolds were then repopulated with porcine ovarian cells or with epigenetically erased porcine and human dermal fibroblasts. The results obtained demonstrated that the decellularized extracellular matrix (ECM)-based scaffold may constitute a suitable niche for ex vivo culture of ovarian cells. Furthermore, it was able to properly drive epigenetically erased cell differentiation, fate, and viability. Overall, the method described represents a powerful tool for the in vitro creation of a bioengineered ovary that may constitute a promising solution for hormone and fertility restoration. In addition, it allows for the creation of a suitable 3D platform with useful applications both in toxicological and transplantation studies.


2009 ◽  
Vol 20 (1) ◽  
pp. 22-26 ◽  
Author(s):  
Rosana Belchior Miranda ◽  
Sandra Rivera Fidel ◽  
Maria Aparecida Affonso Boller

This study compared the cytotoxicity of an experimental epoxy-resin and calcium hydroxide-based cement (MBPc), gray mineral trioxide aggregate (MTA) and white mineral trioxide aggregate (WMTA) using the agar overlay method with neutral red dye. L929 cells were seeded into 6-well culture plates where 48-h set test materials were placed on the agar overlay, in triplicate. Teflon and natural rubber served as negative and positive controls. After an incubation period of 24 h at 37ºC in a humidified atmosphere of 5% CO2 in air, a discolored area around the samples and the positive controls could be observed and measured per quadrant. The mean values were compared and converted into grades to classify the results according to the table of cytotoxicity grades according to the Standard Operating Procedures (SOP) of the Oswaldo Cruz Foundation, Brazil. The nonviable cell areas and the morphological changes in the cells were observed with an inverted microscope. The results showed grade 1 (slight) for the two types of MTA (p>0.05) and grade 2 (mild) for the MBPc (p<0.001). All samples met the requirements of the test as none of the cultures showed reactivity higher than grade 2.


Sign in / Sign up

Export Citation Format

Share Document