scholarly journals Phytochemical Screening, Antioxidant and Sperm Viability of Nelumbo nucifera Petal Extracts

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1375
Author(s):  
Jiraporn Laoung-on ◽  
Churdsak Jaikang ◽  
Kanokporn Saenphet ◽  
Paiwan Sudwan

Sacred lotus (Nelumbo nucifera Gaertn.; N. nucifera) is a common ingredient in traditional medicine and Thai recipes. Its petal is an agricultural waste from stamen production. There are limitations in the used and pharmacological data of the petals resulting in more petals waste. The aims of this study were to investigate the phytochemical contents, antioxidant activity, and potential effects on sperm viability of aqueous (NAE) and ethanolic extracts (NEE) of both red and white N. nucifera petals. The white NAE had the highest total phenolics content, total tannins content and maximal antioxidant activity. The white NEE had the highest concentration of total flavonoids. Quercetin was a major flavonoid and was found in the aqueous extracts. Both red and white of NAE in the range of 0.22 to 1.76 mg/mL increased sperm viability. The white NAE was prominent in phytochemical content, antioxidant activity, and both red and white NAE effectively increased rat sperm viability in the in vitro model. The white NAE enhanced sperm viability by decreasing oxidative stress. It might be suggested that the N. nucifera petals have benefits for sperm viability health promotion and may increase the economic value of agricultural waste.

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3579
Author(s):  
Svetlana A. Popova ◽  
Evgenia V. Pavlova ◽  
Oksana G. Shevchenko ◽  
Irina Yu. Chukicheva ◽  
Aleksandr V. Kutchin

The pyrazoline ring is defined as a “privileged structure” in medicinal chemistry. A variety of pharmacological properties of pyrazolines is associated with the nature and position of various substituents, which is especially evident in diarylpyrazolines. Compounds with a chalcone fragment show a wide range of biological properties as well as high reactivity which is primarily due to the presence of an α, β-unsaturated carbonyl system. At the same time, bicyclic monoterpenoids deserve special attention as a source of a key structural block or as one of the pharmacophore components of biologically active molecules. A series of new diarylpyrazoline derivatives based on isobornylchalcones with different substitutes (MeO, Hal, NO2, N(Me)2) was synthesized. Antioxidant properties of the obtained compounds were comparatively evaluated using in vitro model Fe2+/ascorbate-initiated lipid peroxidation in the substrate containing brain lipids of laboratory mice. It was demonstrated that the combination of the electron-donating group in the para-position of ring B and OH-group in the ring A in the structure of chalcone fragment provides significant antioxidant activity of synthesized diarylpyrazoline derivatives.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 464 ◽  
Author(s):  
Stefano Acquadro ◽  
Silvia Appleton ◽  
Arianna Marengo ◽  
Carlo Bicchi ◽  
Barbara Sgorbini ◽  
...  

Green pruning residues (GPRs) and leaves from 16 red and white Vitis vinifera L. cultivars from Piedmont (Italy) were studied. The investigated samples were extracted by ultrasound-assisted extraction optimized by an experimental design, and quali- and quantitatively analyzed by HPLC-PDA-MS/MS. GPRs and leaves show a similar polyphenolic pattern, with quercetin 3-O-glucuronide, caftaric acid, and quercetin 3-O-glucoside as the main components, although in variable proportions. The HPLC results were related to the antioxidant activity, measured as total phenolic content and through DPPH and ABTS assays with similar results. Colorimetric in vitro assays, offline combined with HPLC-PDA analysis, determine which compounds contribute to the antioxidant activity in terms of radical scavenging abilities. Valorization of GPRs is a potential source of natural compounds that could be of interest in the health field, increasing their economic value together with a positive effect on the environment.


2006 ◽  
Vol 104 (3) ◽  
pp. 322-327 ◽  
Author(s):  
Sujay Rai ◽  
Atul Wahile ◽  
Kakali Mukherjee ◽  
Bishnu Pada Saha ◽  
Pulok K. Mukherjee

Plant Science ◽  
2015 ◽  
Vol 238 ◽  
pp. 81-94 ◽  
Author(s):  
Adeyemi O. Aremu ◽  
Wendy A. Stirk ◽  
Nqobile A. Masondo ◽  
Lenka Plačková ◽  
Ondřej Novák ◽  
...  

Reproduction ◽  
2003 ◽  
pp. 509-517 ◽  
Author(s):  
A Fazeli ◽  
RM Elliott ◽  
AE Duncan ◽  
A Moore ◽  
PF Watson ◽  
...  

Oviductal apical plasma membrane fractions have been successfully used to provide an in vitro model to study the role of direct membrane contact in sperm-oviduct interactions. Apical plasma membrane preparations from pig oviductal tissues show a dose-response in their ability to maintain boar sperm viability in vitro. Membrane preparations obtained from other tissues (lung and duodenum) are incapable of maintaining boar sperm viability to the same extent as oviductal tissue. The present study examined the validity of two hypotheses that arise from current knowledge of sperm-oviduct interactions, namely, that (i) apical plasma membranes prepared from ampullar regions of the oviduct are less effective than those from isthmus regions, and (ii) sperm survival is more effective in apical plasma membrane preparations derived from follicular phase oviducts than those derived from luteal phase oviducts. Both hypotheses were proved false. The nature of the active component(s) in the oviductal apical plasma membrane fractions was further investigated. Heat treatment (100 degrees C for 20 min) diminished the capacity of membranes to support boar sperm viability. Furthermore, a soluble salt-extracted fraction obtained from oviductal apical plasma membrane preparations was biologically active and supported boar sperm viability in vitro. This may indicate that the active factor(s) responsible for the maintenance of boar sperm viability is not an integral part of oviductal membranes and is peripherally bound to these membranes.


2012 ◽  
Vol 24 (7) ◽  
pp. 988 ◽  
Author(s):  
Ahmed Aldarmahi ◽  
Sarah Elliott ◽  
Jean Russell ◽  
Thomas Klonisch ◽  
Sabine Hombach-Klonisch ◽  
...  

In vivo, gamete maturation, fertilisation and early embryonic development take place inside the oviduct. Several studies have indicated that local responses towards gametes and embryos are generated by the maternal reproductive tract. However, no defined in vitro model currently exists to allow detailed and systematic investigation of maternal communications with gametes and embryos. Therefore, we characterised an in vitro model based on the interaction of boar spermatozoa with an immortalised porcine oviduct epithelial cell line to evaluate different factors that may affect this model. The factors tested were sperm viability, source of spermatozoa, cell passage effect and the effect of reproductive and non-reproductive epithelial cells in the interaction with spermatozoa. After 24 h of co-incubation, RNA was extracted and used to synthesise cDNA for quantitative real-time PCR. Alteration in the expression of genes such as adrenomedullin, heat-shock 70-kDa protein 8 and prostaglandin E synthase was considered as the end point of this assay. The results showed that sperm viability and cell passage number had an effect on oviductal gene expression in response to spermatozoa. Oviductal cells showed significant alterations in gene expression when compared with non-reproductive epithelial cells. The simple in vitro system described here has potential application for further studies in our understanding of mechanisms involved in maternal interactions with spermatozoa.


2020 ◽  
Vol 2 (3) ◽  
pp. 653-662
Author(s):  
Rokiman Letsara ◽  
Rigobert Andrianantenaina ◽  
Gédéon Ngiala Bongo ◽  
Colette Masengo Ashande ◽  
Mahendra Ilmi S Matondang ◽  
...  

The World Health Organization reported that at least 80% of populations rely on traditional medicine and medicinal plants for their primary health care. Due to their phytochemical compounds, the plants of the Aloe genus are reported to have high potential antiCovid-19 (and antioxidant properties. The aim of this study is to evaluate the in vitro antioxidant activity of some Malagasy endangered species of Aloe genus. The ethanolic extract of few Aloe of Madagascar leaf extracts was fractionated by liquid-liquid partition using hexane. In total 18 different fractions from 9 species have been used to determine their antioxidant activity through in vitro model by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. Both hexanic extract and aqueous extract displayed antioxidant activities in four species. The most evident antioxidant activity was expressed by A. helenae.


2020 ◽  
Vol 21 (22) ◽  
pp. 8707
Author(s):  
Christian Galasso ◽  
Concetta Piscitelli ◽  
Christophe Brunet ◽  
Clementina Sansone

The antioxidant activity of natural compounds consists in their ability to modulate gene and protein expression, thus inducing an integrated cell protective response and repair processes against oxidative stress. New screening tools and methodologies are crucial for the actual requirement of new products with antioxidant activity to boost endogenous oxidative stress responsive pathways, Reactive Oxygen Species (ROS) metabolism and immune system activity, preserving human health and wellness. In this study, we performed and tested an integrated oxidative stress analysis, using DPPH assay and PNT2 cells injured with DPPH. We firstly investigated the mechanism of action of the oxidising agent (DPPH) on PNT2 cells, studying the variation in cell viability, oxidative stress genes, inflammatory mediator and ROS levels. The results reveal that DPPH activated ROS production and release of Prostaglandin E2 in PNT2 at low and intermediate doses, while cells switched from survival to cell death signals at high doses of the oxidising agent. This new in vitro oxidative stress model was validated by using Trolox, β-carotene and total extract of the green microalga Testraselmis suecica. Only the T. suecica extract can completely counteract DPPH-induced injury, since its chemical complexity demonstrated a multilevel protecting and neutralising effect against oxidative stress in PNT2.


Sign in / Sign up

Export Citation Format

Share Document