scholarly journals Chemical Composition and Assessment of Antimicrobial Activity of Lavender Essential Oil and Some By-Products

Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1829
Author(s):  
Alexandru Ciocarlan ◽  
Lucian Lupascu ◽  
Aculina Aricu ◽  
Ion Dragalin ◽  
Violeta Popescu ◽  
...  

The producers of essential oils from the Republic of Moldova care about the quality of their products and at the same time, try to capitalize on the waste from processing. The purpose of the present study was to analyze the chemical composition of lavender (Lavanda angustifolia L.) essential oil and some by-products derived from its production (residual water, residual herbs), as well as to assess their “in vitro” antimicrobial activity. The gas chromatography-mass spectrometry analysis of essential oils produced by seven industrial manufacturers led to the identification of 41 constituents that meant 96.80–99.79% of the total. The main constituents are monoterpenes (84.08–92.55%), followed by sesquiterpenes (3.30–13.45%), and some aliphatic compounds (1.42–3.90%). The high-performance liquid chromatography analysis allowed the quantification of known triterpenes, ursolic, and oleanolic acids, in freshly dried lavender plants and in the residual by-products after hydrodistillation of the essential oil. The lavender essential oil showed good antibacterial activity against Bacillus subtilis, Pseudomonas fluorescens, Xanthomonas campestris, Erwinia carotovora at 300 μg/mL concentration, and Erwinia amylovora, Candida utilis at 150 μg/mL concentration, respectively. Lavender plant material but also the residual water and ethanolic extracts from the solid waste residue showed high antimicrobial activity against Aspergillus niger, Alternaria alternata, Penicillium chrysogenum, Bacillus sp., and Pseudomonas aeroginosa strains, at 0.75–6.0 μg/mL, 0.08–0.125 μg/mL, and 0.05–4.0 μg/mL, respectively.

Plants ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 79 ◽  
Author(s):  
María Ibáñez ◽  
María Blázquez

The chemical composition of winter savory, peppermint, and anise essential oils, and in vitro and in vivo phytotoxic activity against weeds (Portulaca oleracea, Lolium multiflorum, and Echinochloa crus-galli) and food crops (maize, rice, and tomato), have been studied. Sixty-four compounds accounting for between 97.67–99.66% of the total essential oils were identified by Gas Chromatography-Mass Spectrometry analysis. Winter savory with carvacrol (43.34%) and thymol (23.20%) as the main compounds produced a total inhibitory effect against the seed germination of tested weed. Menthol (48.23%), menthone (23.33%), and iso-menthone (16.33%) from peppermint only showed total seed germination inhibition on L. multiflorum, whereas no significant effects were observed with trans-anethole (99.46%) from anise at all concentrations (0.125–1 µL/mL). Low doses of peppermint essential oil could be used as a sustainable alternative to synthetic agrochemicals to control L. multiflorum. The results corroborate that in vivo assays with a commercial emulsifiable concentrate need higher doses of the essential oils to reproduce previous in vitro trials. The higher in vivo phytotoxicity of winter savory essential oil constitutes an eco-friendly and less pernicious alternative to weed control. It is possible to achieve a greater in vivo phytotoxicity if less active essential oil like peppermint is included with other active excipients.


2015 ◽  
Vol 43 (2) ◽  
pp. 432-438 ◽  
Author(s):  
Aneta WESOŁOWSKA ◽  
Monika GRZESZCZUK ◽  
Dorota JADCZAK ◽  
Paweł NAWROTEK ◽  
Magdalena STRUK

The chemical composition of the essential oils obtained by hydrodistillation from the aerial parts of Thymus serpyllum and Thymus serpyllum‘Aureus’ has been investigated by gas chromatography-mass spectrometry (GC-MS). Forty-seven compounds (99.67% of the total oil) wereidentified in the essential oil of T. serpyllum. The main components found in the oil were carvacrol (37.49%), -terpinene (10.79%), -caryophyllene (6.51%), p-cymene (6.06%), (E)--ocimene (4.63%) and -bisabolene (4.51%). Similarly, carvacrol (44.93%), -terpinene(10.08%), p-cymene (7.39%) and -caryophyllene (6.77%) dominated in the oil of T. serpyllum ‘Aureus’. A total of forty three compounds wereidentified in this oil, representing 99.49% of the total oil content. On the basis of the obtained data it was proved that the content of 1-octen-3-ol,eucalyptol, (Z)--ocimene, (E)--ocimene, -terpinene, carvacrol methyl ether, germacrene D and -bisabolene was significantly higher for T.serpyllum while T. serpyllum ‘Aureus’ was characterized by a significantly higher content of 3-octanone, 3-octanol, p-cymene, borneol andcarvacrol. The isolated essential oils were evaluated for their antimicrobial activity against nine reference strains (Escherichia coli, Staphylococcusaureus, Staphylococcus epidermidis, Streptococcus agalactiae, Enterococcus faecalis, Bacillus cereus, Micrococcus luteus, Proteus vulgaris and Candidaalbicans) by the microdilution technique. Based on this test, the minimum inhibitory concentrations (MIC) of essential oil were calculated. Thevolatile oil obtained from T. serpyllum showed the highest antimicrobial activity relative to the strain of E. coli (MIC=0.025 μL/mL) and to theyeast C. albicans (MIC=0.05 μL/mL). Similarly, a significant antimicrobial activity exhibited T. serpyllum ‘Aureus’ essential oil, although the MICvalues obtained in that case for E. coli and C. albicans strains were twice as high and were respectively 0.05 μL/mL and 0.1 μL/mL.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3532
Author(s):  
Ben Salha ◽  
Herrera Díaz ◽  
Lengliz ◽  
Abderrabba ◽  
Labidi

In this study, Carum carvi L. essential oil (CEO) and Origanum majorana L. essential oil (MEO) was steam-distillated under reduced pressure. We henceforth obtained three fractions for each essential oil: CF1, CF2, CF3, MF1, MF2, and MF3. Then, these fractions were characterized using the gas chromatography–mass spectrometry (GC-MS) technique. The results indicated that some fractions were rich in oxygenated compounds (i.e., CF2, CF3, MF2, and MF3) with concentrations ranging from 79.21% to 98.56%. Therefore, the influence of the chemical composition of the essential oils on their antifungal activity was studied. For this purpose, three food spoilage fungi were isolated, identified, and inoculated in vitro, in order to measure the antifungal activity of CEO, MEO, and their fractions. The results showed that stronger fungi growth inhibitions (FGI) (above 95%) were found in fractions with higher percentages of oxygenated compounds, especially with (−)-carvone and terpin-4-ol as the major components. Firstly, this work reveals that the free-terpenes hydrocarbons fractions obtained from MEO present higher antifungal activity than the raw essential oil against two families of fungi. Then, it suggests that the isolation of (−)-carvone (97.15 ± 5.97%) from CEO via vacuum distillation can be employed successfully to improve antifungal activity by killing fungi (FGI = 100%). This study highlights that separation under reduced pressure is a simple green method to obtain fractions or to isolate compounds with higher biological activity useful for pharmaceutical products or natural additives in formulations.


2002 ◽  
Vol 57 (3-4) ◽  
pp. 287-290 ◽  
Author(s):  
Prokopios Magiatis ◽  
Alexios-Leandros Skaltsounis ◽  
Ioanna Chinou ◽  
Serkos A. Haroutounian

The chemical composition of the essential oils of Achillea holosericea, Achillea taygetea, Achillea fraasii was determined by GC/MS analysis. Among the ninety-five assayed constituents, camphor, borneol and 1,8-cineol were found to be the major components. The in-vitro antimicrobial activity of these essential oils was evaluated against six bacteria indicating that the first is totally inactive, while the other two possess moderate to strong activities mainly against the Gram negative strains. The essential oil of A. fraasii was also active against the tested pathogenic fungi


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Prabodh Satyal ◽  
Bhuwan K. Chhetri ◽  
Noura S. Dosoky ◽  
Ambika Poudel ◽  
William N. Setzer

The essential oil from the dried rhizome of Nardostachys grandiflora, collected from Jaljale, Nepal, was obtained in 1.4% yield, and a total of 72 compounds were identified constituting 93.8% of the essential oil. The rhizome essential oil of N. grandiflora was mostly composed of calarene (9.4%), valerena-4,7(11)-diene (7.1%), nardol A (6.0%), 1(10)-aristolen-9-ol (11.6%), jatamansone (7.9%), valeranal (5.6%), and cis-valerinic acid (5.7%). The chemical composition of N. grandiflora rhizome oil from Nepal is qualitatively very different than those from Indian, Chinese, and Pakistani Nardostachys essential oils. In this study we have evaluated the chemical composition and biological activities of N. grandiflora from Nepal. Additionally, 1(10)-aristolen-9-ol was isolated and the structure determined by NMR, and represents the first report of this compound from N. grandiflora. N. grandiflora rhizome oil showed in-vitro antimicrobial activity against Bacillus cereus, Escherichia coli, and Candida albicans (MIC = 156 μg/mL), as well as in-vitro cytotoxic activity on MCF-7 cells.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
Kristina Ložienė ◽  
Juozas Labokas ◽  
Vaida Vaičiulytė ◽  
Jurgita Švedienė ◽  
Vita Raudonienė ◽  
...  

The study aimed to establish the chemical composition of fruit essential oils of M. gale and test their activities against the selected pathogenic bacteria (Staphylococcus aureus, Escherichia coli, Acinetobacter baumannii), yeasts (Candida albicans, C. parapsilosis), fungi (Aspergillus fumigatus, A. flavus) and dermatophytes (Trichophyton rubrum, T. mentagrophytes). Fruit samples from natural (Western Lithuania) and anthropogenic (Eastern Lithuania) M. gale populations were studied separately. Essential oils were isolated from dried fruits by hydrodistillation and analysed by GC/FID and GC/MS methods; enantiomeric composition of α-pinene was established by chiral-phase capillary GC. Minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC) of essential oils were determined using the broth microdilution method. Plants from the natural population with a humid marine climate accumulated significantly higher amounts of fruit essential oils (3.34±0.05%) than those from the anthropogenic population with a more continental climate (2.71±0.22%). In total, 39 volatiles including α-pinene (23.52–27.17%), 1,8-cineole (17.19–18.84%) and α-phellandrene (9.47–10.03%) as main compounds were identified. Chiral analysis demonstrated that (1S)-(–)-α-pinene prevailed over (1R)-(+)-α-pinene and amounted to 94.09–95.28% of all fraction of this monoterpene. The antimicrobial study in vitro indicated that C. parapsilosis, dermatophytes and Aspergillus fungi were more susceptible to fruit essential oils of M. gale, whereas E. coli and C. albicans were weakly inhibited even at the highest essential oil concentration. The strongest growth-inhibitory and bactericidal effect of sweet gale essential oil was established on S. aureus. This could be attributed to the major essential oil compounds with known antimicrobial activity, such as α-pinene, 1,8-cineole and a-phellandrene. Keywords: Myrica gale; essential oil; chemical compounds; terpenes; enantiomers; antimicrobial.


2021 ◽  
Vol 12 (5) ◽  
pp. 45-48
Author(s):  
Sonia Mol Joseph ◽  
Amala Dev A R

The volatile chemical composition of leaf essential oils of three Annona species (Annona cherimola, Annona muricata and Annona squamosa) from the different regions of Kerala, South Indian was determined using gas chromatography-mass spectrometry analysis. A total of 41 constituents belonging to monoterpenoids, sesquiterpenoids and diterpenoids were identified. Monoterpenes and sesquiterpenoids were the major class of volatile compounds in most of the Annona species examined. The study led to the identification of major compounds as germacrene D (23.5%), bicyclogermacrene (14.6%) and β-caryophyllene (11.7%) in A. cherimola, α-pinene (13.3%), β-caryophyllene (11.2%) and β-pinene (10.1%) in A. muricata, and β-caryophyllene (11.9%) and α-pinene (8.2%) in A. squamosa respectively. The examined essential oils showed that β-caryophyllene is the common constituent identified in all the three species and other constituents are more specific for each species under study. Present investigation reports, a comparison of essential oil compositions of three Annona species from Kerala. Results of this study prove that essential oils examined have considerable dissimilarity in chemical composition with previously reported leaf essential oil compositions from other regions. A chemotaxonomic analysis of these essential oils based on the distribution of compounds has revealed an efficient method to differentiate Annona species unambiguously.


Molecules ◽  
2019 ◽  
Vol 24 (2) ◽  
pp. 342 ◽  
Author(s):  
Wondwosen Matebie ◽  
Wanchang Zhang ◽  
Guangbo Xie

The essential oil from Phytolacca dodecandra, a traditional herb of Ethiopia, has been studied, including the chemical composition and antimicrobial activity. The difference between four P. dodecandra samples (P-1–P-4), which differed in gender or location, has also been analyzed. The essential oils were obtained by steam distillation, while the aromas were extracted by head space solid-phase microextraction (HS-SPME) and both were analyzed by gas chromatography- mass spectrometry (GC-MS). The oils’ antimicrobial activities were evaluated by the microdilution method against Escherichia coli, Staphylococcus aureus, Bacillus subtilis and Candida albicans. Ninety one components, representing 88.37 to 94.01% of the aromas, were identified. The compositions of the aromas of four samples are mainly dominated by aldehydes and ketones: 2-nonanone (1.80–30.80%), benzaldehyde (4.99–25.99%), and sulcatone (2.34–5.87%). Sixty components representing 64.61 to 69.64% of the oils were identified, and phytone (3.04–21.23%), phytol (4.11–26.29%) and palmitic acid (1.49–23.87%) are the major compounds. No obvious antimicrobial activity was observed for all the four essential oils.


2019 ◽  
Vol 12 (3) ◽  
pp. 124 ◽  
Author(s):  
Paola Poma ◽  
Manuela Labbozzetta ◽  
James A. McCubrey ◽  
Aro Vonjy Ramarosandratana ◽  
Maurizio Sajeva ◽  
...  

Drug resistance remains a major challenge in the treatment of cancer. The multiplicity of the drug resistance determinants raises the question about the optimal strategies to deal with them. Essential oils showed to inhibit the growth of different tumor cell types. Essential oils contain several chemical classes of compounds whose heterogeneity of active moieties can help prevent the development of drug resistance. In the present paper, we analyzed, by gas chromatography-mass spectrometry the chemical composition of the essential oil of the leaves of Kalanchoe beharensis obtained by hydrodistillation and compared the chemical composition of its essential oil with that of Cyphostemma juttae. Our results demonstrated the anticancer and proapoptotic activities of both species against acute myeloid leukemia on an in vitro model and its multidrug resistant variant involving NF-κB pathway. The essential oils of both species produced a significant decrease in many targets of NF-κB both at mRNA and protein levels. The results corroborate the idea that essential oils may be a good alternative to traditional drugs in the treatment of cancer, especially in drug resistant cancer.


2018 ◽  
Vol 16 (S1) ◽  
pp. S104-S108 ◽  
Author(s):  
M. Touaibia ◽  
F. Saidi ◽  
D. Abdellali ◽  
F.Z. Raber Elmaizi

Essential oil of Ammodaucus leucotrichus subsp. leucotrichus Coss & Dur (endemic), extracted from the seeds by hydrodistillation, was screened for its possible antimicrobial activity as well as its chemical composition. According to the Gas Chromatography/Mass Spectrometry analysis, 35 components were identified (98.23%), perillaldehyde (45.58%) and limonene (14.02%) being the major components. The antimicrobial test of the essential oil showed that Staphylococcus aureus (MIC = 4.5 mg/ml) and Bacillus cereus (MIC = 9 mg/ml) were the most sensitive strains, followed by Candida krusei and Candida albicans (MIC = 18 mg/ml both).


Sign in / Sign up

Export Citation Format

Share Document