scholarly journals Assessment of Silicon- and Mycorrhizae- Mediated Constitutive and Induced Systemic Resistance in Rice, Oryza sativa L., against the Fall Armyworm, Spodoptera frugiperda Smith

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2126
Author(s):  
Santhi Bhavanam ◽  
Michael J. Stout

Induced resistance provides protection in plants against insect herbivores. Silicon and mycorrhizae often prime plant defenses and thereby enhance plant resistance against herbivores. In rice, Oryza sativa L., insect injury has been shown to induce resistance against future defoliators. However, it is unknown if silicon and mycorrhizae treatments in combination with insect injury result in greater induced resistance. Using the fall armyworm (FAW), Spodoptera frugiperda Smith, two experiments were conducted to investigate whether (1) silicon or mycorrhizae treatment alters resistance in rice and (2) induced systemic resistance in response to insect injury is augmented in silicon- or mycorrhizae- treated plants. In the first experiment, silicon treatment reduced FAW growth by 20% while mycorrhizae increased FAW growth by 8%. In the second experiment, insect injury induced systemic resistance, resulting in a 23% reduction in FAW larval weight gains on injured compared to uninjured plants, irrespective of treatment. Neither silicon nor mycorrhizae enhanced this systemic resistance in insect-injured plants. Furthermore, mycorrhizae resulted in the systemic increase of peroxidase (POD) and polyphenol oxidase (PPO) activities, and injury caused a slight decrease in these enzyme activities in mycorrhizae plants. Silicon treatment did not result in a stronger induction of POD and PPO activity in injured plants. Taken together, these results indicate a lack of silicon and mycorrhizae priming of plant defenses in rice. Regardless of injury, silicon reduced FAW weight gains by 36%. Based on these results, it appears silicon-mediated biomechanical rather than biochemical defenses may play a greater role in increased resistance against FAW in rice.

2012 ◽  
Vol 102 (4) ◽  
pp. 403-412 ◽  
Author(s):  
David M. Weller ◽  
Dmitri V. Mavrodi ◽  
Johan A. van Pelt ◽  
Corné M. J. Pieterse ◽  
Leendert C. van Loon ◽  
...  

Pseudomonas fluorescens strains that produce the polyketide antibiotic 2,4-diacetylphloroglucinol (2,4-DAPG) are among the most effective rhizobacteria that suppress root and crown rots, wilts, and damping-off diseases of a variety of crops, and they play a key role in the natural suppressiveness of some soils to certain soilborne pathogens. Root colonization by 2,4-DAPG-producing P. fluorescens strains Pf-5 (genotype A), Q2-87 (genotype B), Q8r1-96 (genotype D), and HT5-1 (genotype N) produced induced systemic resistance (ISR) in Arabidopsis thaliana accession Col-0 against bacterial speck caused by P. syringae pv. tomato. The ISR-eliciting activity of the four bacterial genotypes was similar, and all genotypes were equivalent in activity to the well-characterized strain P. fluorescens WCS417r. The 2,4-DAPG biosynthetic locus consists of the genes phlHGF and phlACBDE. phlD or phlBC mutants of Q2-87 (2,4-DAPG minus) were significantly reduced in ISR activity, and genetic complementation of the mutants restored ISR activity back to wild-type levels. A phlF regulatory mutant (overproducer of 2,4-DAPG) had ISR activity equivalent to the wild-type Q2-87. Introduction of DAPG into soil at concentrations of 10 to 250 μM 4 days before challenge inoculation induced resistance equivalent to or better than the bacteria. Strain Q2-87 induced resistance on transgenic NahG plants but not on npr1-1, jar1, and etr1 Arabidopsis mutants. These results indicate that the antibiotic 2,4-DAPG is a major determinant of ISR in 2,4-DAPG-producing P. fluorescens, that the genotype of the strain does not affect its ISR activity, and that the activity induced by these bacteria operates through the ethylene- and jasmonic acid-dependent signal transduction pathway.


2020 ◽  
Vol 11 ◽  
Author(s):  
Steven Dreischhoff ◽  
Ishani S. Das ◽  
Mareike Jakobi ◽  
Karl Kasper ◽  
Andrea Polle

Ectomycorrhizal fungi (EMF) grow as saprotrophs in soil and interact with plants, forming mutualistic associations with roots of many economically and ecologically important forest tree genera. EMF ensheath the root tips and produce an extensive extramatrical mycelium for nutrient uptake from the soil. In contrast to other mycorrhizal fungal symbioses, EMF do not invade plant cells but form an interface for nutrient exchange adjacent to the cortex cells. The interaction of roots and EMF affects host stress resistance but uncovering the underlying molecular mechanisms is an emerging topic. Here, we focused on local and systemic effects of EMF modulating defenses against insects or pathogens in aboveground tissues in comparison with arbuscular mycorrhizal induced systemic resistance. Molecular studies indicate a role of chitin in defense activation by EMF in local tissues and an immune response that is induced by yet unknown signals in aboveground tissues. Volatile organic compounds may be involved in long-distance communication between below- and aboveground tissues, in addition to metabolite signals in the xylem or phloem. In leaves of EMF-colonized plants, jasmonate signaling is involved in transcriptional re-wiring, leading to metabolic shifts in the secondary and nitrogen-based defense metabolism but cross talk with salicylate-related signaling is likely. Ectomycorrhizal-induced plant immunity shares commonalities with systemic acquired resistance and induced systemic resistance. We highlight novel developments and provide a guide to future research directions in EMF-induced resistance.


2003 ◽  
Vol 38 (3) ◽  
pp. 457-467 ◽  
Author(s):  
Betty Kreuger ◽  
Daniel A. Potter

We tested the hypothesis that early-season defoliation of flowering crabapple, Malus sp., by eastern tent caterpillars, Malacosoma americanum F., induces localized or systemic resistance to Japanese beetles, Popillia japonica Newman, feeding on the same trees in late June. ‘Candymint Sargent’ crabapple trees were inoculated with M. americanum egg masses, resulting in extensive defoliation during March and April. Second flush leaves of defoliated trees were smaller and thinner than those of control trees. In laboratory feeding assays with non-damaged foliage, beetles generally preferred fully expanded leaves over partially expanded ones, regardless of whether or not the source tree had been defoliated. Detached first flush leaves with caterpillar damage were fed upon less than comparable non-damaged leaves, suggesting that early-season wounding causes some within-leaf reduction in palatability to P. japonica. Other assays with detached first- and second-flush leaves, however, indicated absence of induced, systemic resistance. Previously-defoliated and control trees sustained comparable damage from natural beetle populations in the field. Our results suggest that defoliation of Malus sp. by tent caterpillars in early spring is unlikely to reduce feeding damage by Japanese beetles later in the same growing season.


2003 ◽  
Vol 110 (5) ◽  
pp. 419-431 ◽  
Author(s):  
R. Mohan Babu ◽  
A. Sajeena ◽  
A. Vijaya Samundeeswari ◽  
A. Sreedhar ◽  
P. Vidhyasekaran ◽  
...  

2011 ◽  
Vol 101 (7) ◽  
pp. 768-777 ◽  
Author(s):  
Bas Verhagen ◽  
Patricia Trotel-Aziz ◽  
Philippe Jeandet ◽  
Fabienne Baillieul ◽  
Aziz Aziz

Bacteria such as Pantoea agglomerans (Pa-AF2), Bacillus subtilis (Bs-271), Acinetobacter lwoffii (Al-113), and Pseudomonas fluorescens (Pf-CT2), originating from the vineyard, can induce defense responses and enhance resistance of grapevine against the fungal pathogen Botrytis cinerea. The perception of these bacteria by plant cells or tissues in relation to their activities remains unknown. In this study, we examined the relationships between the activity of each bacterium to induce or prime some defense responses, and its effectiveness to induce resistance in grapevine against B. cinerea. We showed that all selected bacteria are capable of inducing early oxidative burst and phytoalexin (trans-resveratrol and trans-ε-viniferin) production in grapevine cells and leaves. Pf-CT2 and Al-113 induced higher H2O2 and trans-resveratrol accumulations, and were able to further prime plants for accelerated phytoalexin production after B. cinerea challenge. These two bacteria were also the most effective in inducing local and systemic resistance. A similar level of induced resistance was observed with live Pa-AF2 which also induced but not primed a greater accumulation of trans-resveratrol. However, Bs-271, which was less effective in inducing resistance, induced a lower trans-resveratrol synthesis, without priming activity. Treatment of grapevine cells with growing medium or crude extract of the bacteria quickly and strongly enhanced oxidative burst compared with the live bacteria. However, both treatments resulted in comparable amounts of phytoalexins and induced local and systemic resistance to B. cinerea as compared with those induced by living bacteria, with extracts from Pf-CT2 and Al-113 being the most effective. Together, these results indicate that induced resistance can be improved by treatment with bacteria or derived compounds which induced or primed plants for enhanced phytoalexin accumulation.


2002 ◽  
Vol 15 (11) ◽  
pp. 1147-1156 ◽  
Author(s):  
Kris Audenaert ◽  
Theresa Pattery ◽  
Pierre Cornelis ◽  
Monica Höfte

The rhizobacterium Pseudomonas aeruginosa 7NSK2 produces secondary metabolites such as pyochelin (Pch), its precursor salicylic acid (SA), and the phenazine compound pyocyanin. Both 7NSK2 and mutant KMPCH (Pch-negative, SA-positive) induced resistance to Botrytis cinerea in wild-type but not in transgenic NahG tomato. SA-negative mutants of both strains lost the capacity to induce resistance. On tomato roots, KMPCH produced SA and induced phenylalanine ammonia lyase activity, while this was not the case for 7NSK2. In 7NSK2, SA is probably very efficiently converted to Pch. However, Pch alone appeared not to be sufficient to induce resistance. In mammalian cells, Fe-Pch and pyocyanin can act synergistically to generate highly reactive hydroxyl radicals that cause cell damage. Reactive oxygen species are known to play an important role in plant defense. To study the role of pyocyanin in induced resistance, a pyocyanin-negative mutant of 7NSK2, PHZ1, was generated. PHZ1 is mutated in the phzM gene encoding an O-methyltransferase. PHZ1 was unable to induce resistance to B. cinerea, whereas complementation for pyocyanin production or co-inoculation with mutant 7NSK2-562 (Pch-negative, SA-negative, pyocyanin-positive) restored induced resistance. These results suggest that pyocyanin and Pch, rather than SA, are the determinants for induced resistance in wild-type P. aeruginosa 7NSK2.


2006 ◽  
Vol 41 (8) ◽  
pp. 1247-1252 ◽  
Author(s):  
Bernardo de Almeida Halfeld-Vieira ◽  
José Roberto Vieira Júnior ◽  
Reginaldo da Silva Romeiro ◽  
Harllen Sandro Alves Silva ◽  
Maria Cristina Baracat-Pereira

The objective of this work was to verify if the induced resistance mechanism is responsible for the capacity of a phylloplane resident bacteria (Bacillus cereus), isolated from healthy tomato plants, to control several diseases of this crop. A strain of Pseudomonas syringae pv. tomato was used as the challenging pathogen. The absence of direct antibiosis of the antagonist against the pathogen, the significant increase in peroxidases activity in tomato plants exposed to the antagonist and then inoculated with the challenging pathogen, as well as the character of the protection, are evidences wich suggest that biocontrol efficiency presented by the antagonist in previous works might be due to induced systemic resistance (ISR).


2001 ◽  
Vol 79 (7) ◽  
pp. 787-795 ◽  
Author(s):  
Alok K Srivastava ◽  
Tanuja Singh ◽  
T K Jana ◽  
Dilip K Arora

Pseudomonas fluorescens isolate 4-92 induced systemic resistance against charcoal rot disease in chickpea (Cicer arietinum L.) caused by Macrophomina phaseolina (Tassi) Goidanich. Time-course accumulation of pathogenesis-related (PR) proteins (chitinases and glucanases) in chickpea plants inoculated with P. fluorescens was significantly (P = 0.05) higher than in control plants. The level of chitinases and glucanases increased by 6.6- to 7-fold up to 4 days postinoculation; thereafter, little decrease in the activity of PR proteins was observed. Root-colonizing populations of P. fluorescens were at a maximum 2 days after transplantation at different inoculum concentrations, and decreased over time. Inoculation of root tips of chickpea by P. fluorescens, 2,6-dichloroisonicotinic acid, and o-acetylsalicylic acid induced systemic resistance against charcoal rot. Disease was 33 to 55.5% higher in control plants than in plants inoculated with chemical inducers or P. fluorescens. Single treatment of plants with P. fluorescens increased disease resistance by 33%, whereas combined application of P. fluorescens with either of the chemical inducers was most effective in inducing the resistance by 2- to 2.25-fold. The time-course study shows that an interval of at least 2 days was required between induction treatment and challenge inoculation. Biocontrol efficacy of P. fluorescens against charcoal rot disease in chickpea was demonstrated under greenhouse conditions.Key words: biological control, induced resistance, Macrophomina phaseolina, Pseudomonas fluorescens.


Sign in / Sign up

Export Citation Format

Share Document