scholarly journals Metabolic Changes in Seed Embryos of Hypoxia-Tolerant Rice and Hypoxia-Sensitive Barley at the Onset of Germination

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2456
Author(s):  
Jayamini Jayawardhane ◽  
M. K. Pabasari S. Wijesinghe ◽  
Natalia V. Bykova ◽  
Abir U. Igamberdiev

Rice (Oryza sativa L.) and barley (Hordeum vulgare L.) are the cereal species differing in tolerance to oxygen deficiency. To understand metabolic differences determining the sensitivity to low oxygen, we germinated rice and barley seeds and studied changes in the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS), activities of the enzymes involved in their scavenging, and measured cell damage parameters. The results show that alcohol dehydrogenase activity was higher in rice than in barley embryos providing efficient anaerobic fermentation. Nitric oxide (NO) levels were also higher in rice embryos indicating higher NO turnover. Both fermentation and NO turnover can explain higher ATP/ADP ratio values in rice embryos as compared to barley. Rice embryos were characterized by higher activity of S-nitrosoglutathione reductase than in barley and a higher level of free thiols in proteins. The activities of antioxidant enzymes (superoxide dismutase, ascorbate peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase) in imbibed embryos were higher in rice than in barley, which corresponded to the reduced levels of ROS, malonic dialdehyde and electrolyte leakage. The observed differences in metabolic changes in embryos of the two cereal species differing in tolerance to hypoxia can partly explain the adaptation of rice to low oxygen environments.

2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).


2020 ◽  
Author(s):  
Ian Sims ◽  
K Middleton ◽  
AG Lane ◽  
AJ Cairns ◽  
A Bacic

Microscopic examination of suspension-cultured cells of Phleum pratense L., Panicum miliaceum L., Phalaris aquatica L. and Oryza sativa L. showed that they were comprised of numerous root primordia. Polysaccharides secreted by these suspension cultures contained glycosyl linkages consistent with the presence of high proportions of root mucilage-like polysaccharides. In contrast, suspension-cultured cells of Hordeum vulgare L. contained mostly undifferentiated cells more typical of plant cells in suspension culture. The polysaccharides secreted by H. vulgare cultures contained mostly linkages consistent with the presence of glucuronoarabinoxylan. The soluble polymers secreted by cell-suspension cultures of Phleum pratense contained 70% carbohydrate, 14% protein and 6% inorganic material. The extracellular polysaccharides were separated into four fractions by anion-exchange chromatography using a gradient of imidazole-HCl at pH 7.0. From glycosyl-linkage analyses, five polysaccharides were identified: an arabinosylated xyloglucan (comprising 20% of the total polysaccharide), a glucomannan (6%), a type-II arabinogalactan (an arabinogalactan-protein; 7%), an acidic xylan (3%), and a root-slime-like polysaccharide, which contained features of type-II arabinogalactans and glucuronomannans (65%).


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Juan G. Reyes ◽  
Jorge G. Farias ◽  
Sebastián Henríquez-Olavarrieta ◽  
Eva Madrid ◽  
Mario Parraga ◽  
...  

Mammalian spermatogenesis is a complex biological process occurring in the seminiferous tubules in the testis. This process represents a delicate balance between cell proliferation, differentiation, and apoptosis. In most mammals, the testicles are kept in the scrotum 2 to 7°C below body core temperature, and the spermatogenic process proceeds with a blood and oxygen supply that is fairly independent of changes in other vascular beds in the body. Despite this apparently well-controlled local environment, pathologies such as varicocele or testicular torsion and environmental exposure to low oxygen (hypoxia) can result in changes in blood flow, nutrients, and oxygen supply along with an increased local temperature that may induce adverse effects on Leydig cell function and spermatogenesis. These conditions may lead to male subfertility or infertility. Our literature analyses and our own results suggest that conditions such as germ cell apoptosis and DNA damage are common features in hypoxia and varicocele and testicular torsion. Furthermore, oxidative damage seems to be present in these conditions during the initiation stages of germ cell damage and apoptosis. Other mechanisms like membrane-bound metalloproteinases and phospholipase A2 activation could also be part of the pathophysiological consequences of testicular hypoxia.


2021 ◽  
Vol 10 (17) ◽  
pp. e05101724172
Author(s):  
Sara Lorena de Pádua Souza ◽  
Valdinete Vieira Nunes ◽  
Izabel de Jesus Cândido ◽  
Valéria Mota de Brito ◽  
Lucas Alexandre dos Santos Rocha ◽  
...  

Proteins and enzymes are informative biochemical markers frequently used in plant studies. The objective of this work was to present the studies with enzymes and proteins used as biochemical markers in crops and forest species—the articles prospected in the Scopus and Web of Science scientific databases in December 2020. The keywords were a combination of "agricultural" or "forest" with the Boolean operator and the enzymes' name: alcohol dehydrogenase/ADH, malate dehydrogenase/MDH, alpha-amylase/AMS, peroxiredoxin/PERX, and LEA proteins. Eighty-two articles addressed enzymes in agricultural or forest species were included in the analysis. The articles were published from 1976 to 2020, with an average annual publication of 12.2. Three hundred thirty-seven authors developed the annual percentage growth rate of 2.52% and articles. The most studied crops are Oryza sativa L., Glycine max L., Zea mays L., Hordeum vulgare L., specimens of the genera Triticum and Brassica. The forest species were Pinus, Picea, Nothofagus, Quercus, and Sorbus, and Fagus sylvatica L. The main tissues used for extraction are leaves, seeds, buds, and roots. The studies mainly deal with enzymes or proteins as markers associated with abiotic stresses and the structure or genetic diversity.


2021 ◽  
Author(s):  
Mayra Mendoza Cariño ◽  
Ana Laura Bautista Olivas ◽  
Daniel Mendoza Cariño ◽  
Carlos Alberto Ortíz Solorio ◽  
Héctor Duarte Tagles ◽  
...  

Agriculture productivity in the state of Nayarit has decreased since 1998. The aim of the study was to undertake the agroclimatic zoning across the state in order to determine the type of crops more convenient to render the highest yields, based on Papadakis climate classification system. Hydric and thermal characteristics pertaining to the geographic distribution of crops were used, as well as indexes derived from meteorological data provided by 25 climate stations. There were three climatic groups identified: tropical, subtropical and cold land, having four, three and two subgroups each, respectively. First two climatic groups support winter cereals such as oat (Avena sativa L.), barley (Hordeum vulgare L.), rye (Secale cereale L.) and wheat (Triticum aestivum L.); and summer cereals such as corn (Zea mays L.), millet (Panicum italicum L.), rice (Oryza sativa L.) and sorghum (Sorghum bicolor (L.) Moench); in addition to banana (Musa paradisiaca L.), citrus and potato (Solanum tuberosum L.) and sugar cane (Saccharum officinarum L.). On the other hand, corn and potato were found in the cold land climatic group. Based on Papadakis’ methodology, for each climatic sub-group identified, a set of recommendation management were given to improve yields: crop type, sowing season, irrigation, fertilizing and other agrochemicals application; and to avoid crop damage. Agroclimatic zoning map was generated by using the inverse distance weighted interpolation method. This study may contribute to the successful planning of crops across the region and thus improving the state’s economy.


2016 ◽  
Vol 13 (8) ◽  
pp. 2511-2535 ◽  
Author(s):  
Fabian Große ◽  
Naomi Greenwood ◽  
Markus Kreus ◽  
Hermann-Josef Lenhart ◽  
Detlev Machoczek ◽  
...  

Abstract. Low oxygen conditions, often referred to as oxygen deficiency, occur regularly in the North Sea, a temperate European shelf sea. Stratification represents a major process regulating the seasonal dynamics of bottom oxygen, yet, lowest oxygen conditions in the North Sea do not occur in the regions of strongest stratification. This suggests that stratification is an important prerequisite for oxygen deficiency, but that the complex interaction between hydrodynamics and the biological processes drives its evolution. In this study we use the ecosystem model HAMSOM-ECOHAM to provide a general characterisation of the different zones of the North Sea with respect to oxygen, and to quantify the impact of the different physical and biological factors driving the oxygen dynamics inside the entire sub-thermocline volume and directly above the bottom. With respect to oxygen dynamics, the North Sea can be subdivided into three different zones: (1) a highly productive, non-stratified coastal zone, (2) a productive, seasonally stratified zone with a small sub-thermocline volume, and (3) a productive, seasonally stratified zone with a large sub-thermocline volume. Type 2 reveals the highest susceptibility to oxygen deficiency due to sufficiently long stratification periods (>  60 days) accompanied by high surface productivity resulting in high biological consumption, and a small sub-thermocline volume implying both a small initial oxygen inventory and a strong influence of the biological consumption on the oxygen concentration. Year-to-year variations in the oxygen conditions are caused by variations in primary production, while spatial differences can be attributed to differences in stratification and water depth. The large sub-thermocline volume dominates the oxygen dynamics in the northern central and northern North Sea and makes this region insusceptible to oxygen deficiency. In the southern North Sea the strong tidal mixing inhibits the development of seasonal stratification which protects this area from the evolution of low oxygen conditions. In contrast, the southern central North Sea is highly susceptible to low oxygen conditions (type 2). We furthermore show that benthic diagenetic processes represent the main oxygen consumers in the bottom layer, consistently accounting for more than 50 % of the overall consumption. Thus, primary production followed by remineralisation of organic matter under stratified conditions constitutes the main driver for the evolution of oxygen deficiency in the southern central North Sea. By providing these valuable insights, we show that ecosystem models can be a useful tool for the interpretation of observations and the estimation of the impact of anthropogenic drivers on the North Sea oxygen conditions.


Catalysts ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 165 ◽  
Author(s):  
Enrico Sartoretti ◽  
Fabio Martini ◽  
Marco Piumetti ◽  
Samir Bensaid ◽  
Nunzio Russo ◽  
...  

A Gasoline Particulate Filter (GPF) can be an effective solution to abate the particulate matter produced in modern direct injection gasoline engines. The regeneration of this system is critical, since it occurs in oxygen deficiency, but it can be promoted by placing an appropriate catalyst on the filter walls. In this paper, a nanostructured equimolar ceria-praseodymia catalyst, obtained via hydrothermal synthesis, was characterized with complementary techniques (XRD, N2-physisorption, FESEM, XPS, Temperature Programmed Reduction, etc.) and its catalytic performances were investigated in low oxygen availability. Pr-doping significantly affected ceria structure and morphology, and the weakening of the cerium–oxygen bond associated to Pr insertion resulted in a high reducibility. The catalytic activity was explored considering different reactions, namely CO oxidation, ethylene and propylene total oxidation, and soot combustion. Thanks to its capability of releasing active oxygen species, ceria-praseodymia exhibited a remarkable activity and CO2-selectivity at low oxygen concentrations, proving to be a promising catalyst for coated GPFs.


Crystals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 537 ◽  
Author(s):  
Ae Kyung Park ◽  
Il-Sup Kim ◽  
Hackwon Do ◽  
Hyun Kim ◽  
Woong Choi ◽  
...  

Ascorbic acid (AsA) is an abundant component of plants and acts as a strong and active antioxidant. In order to maintain the antioxidative capacity of AsA, the rapid regeneration of AsA is regulated by dehydroascorbate reductase (DHAR) and monodehydroascorbate reductase (MDHAR). To understand how MDHAR functions under extreme temperature conditions, this study characterized its biochemical properties and determined the crystal structure of MDHAR from the Antarctic hairgrass Deschampsia antarctica (DaMDHAR) at 2.2 Å resolution. This allowed for a structural comparison with the mesophilic MDHAR from Oryza sativa L. japonica (OsMDHAR). In the functional analysis, yeast cells expressing DaMDHAR were tolerant to freezing and thawing cycles. It is possible that the expression of DaMDHAR in yeast enhanced the tolerance for ROS-induced abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document