scholarly journals Pre-Harvest MeJA Application Counteracts the Deleterious Impact of Al and Mn Toxicity in Highbush Blueberry Grown in Acid Soils

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2730
Author(s):  
Jorge González-Villagra ◽  
Rocio Pino ◽  
Claudio Inostroza-Blancheteau ◽  
Paula Cartes ◽  
Alejandra Ribera-Fonseca ◽  
...  

Volcanic ash-derived soils are characterized by low pH (pH ≤ 5.5) with increased concentrations of aluminum (Al3+) and manganese (Mn2+), which decreases plant growth, fruit quality, and yield. Methyl jasmonate (MeJA) improves abiotic stress tolerance. Our work aimed to evaluate the application of MeJA’s impact on the growth, antioxidant defense, and fruit quality of highbush blueberry grown under Al and Mn toxicity. A field assay was conducted with four-year-old bushes of highbush blueberry cultivar Legacy under eight treatments (Control, Al (87% of Al saturation), Mn (240 mg kg−1), and Al–Mn with and without MeJA application). Physiological, biochemical, and fruit quality parameters were measured. Growth rate significantly decreased with Al (20%), Mn (45%), and Al–Mn (40%). MeJA application recovered the growth rate. Photosynthetic parameters were not affected. Antioxidant activity increased under all treatments compared with controls, being higher with MeJA application. Total phenols (TP) were decreased in plants under Al (43%) and Mn (20%) compared with controls. MeJA application increased TP in all treatments. Fruits of bushes under Al and Mn toxicity with MeJA applications exhibited an increase in fruit firmness and weight, maintaining suitable contents of soluble solids. Our results provide insights about the beneficial effect of MeJA application on growth, antioxidant properties, and fruit quality of highbush blueberry plants grown in acid soils under Al and Mn toxicity.

Horticulturae ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 245
Author(s):  
Yixin Cai ◽  
Fumiomi Takeda ◽  
Brian Foote ◽  
Lisa Wasko DeVetter

Machine harvesting blueberry (Vaccinium sp.) alleviates labor costs and shortages but can reduce fruit quality. Installation of softer catching surfaces inside modified over-the-row harvesters (modified OTR) and adjusting harvest intervals may improve fruit quality and packout. The objective of this study was to determine the effect of harvest interval on fruit quality of fresh market northern highbush blueberry (Vaccinium corymbosum L.) harvested using a modified OTR. ‘Liberty’ blueberry bushes were harvested by hand or using a modified OTR at 3-, 10-, and 14-day intervals in 2019 and at 7-, 11-, and 14-day intervals in 2020. Hand-harvested ‘Liberty’ had greater packout and firmness than machine-harvested fruit. Machine harvesting at the 3-day interval in 2019, and the 14-day interval in 2020 reduced packout from 70–80% to 60% and 54%, respectively. In 2019, machine harvesting at a 3-day interval overall resulted in fruit with greater firmness, higher titratable acidity (TA), and lower total soluble solids (TSS) and SS/TA, compared to other harvest intervals. In 2020, the 7-day machine-harvest interval had a greater TA and lower TSS/TA, compared to the 11- and 14-day intervals. Overall, modified OTR machine-harvest intervals can be extended to 10–11 days for fresh market northern highbush cultivars such as ‘Liberty’ grown in northwest Washington.


HortScience ◽  
2015 ◽  
Vol 50 (12) ◽  
pp. 1833-1836
Author(s):  
Wenjing Guan ◽  
Xin Zhao ◽  
Donald J. Huber

Interspecific hybrid squash (Cucurbita maxima × Cucurbita moschata) is a well-known cucurbit rootstock for controlling soilborne diseases and improving abiotic stress tolerance. However, reduced fruit quality has been reported on certain melon (Cucumis melo) cultivars when grafted with squash rootstocks. In this study, a field experiment was designed to explore fruit development and quality attributes of galia melon ‘Arava’ by grafting with hybrid squash rootstock ‘Strong Tosa’. Grafted plants with ‘Strong Tosa’ showed delayed anthesis of female flowers by ≈8–9 days, but harvest dates were unaffected compared with non- and self-grafted ‘Arava’ plants. Early and total yields were not significantly different between grafted and nongrafted plants. Grafted plants with ‘Strong Tosa’ rootstock exhibited accelerated fruit development and greater vegetative growth. During the harvest period, ≈27% of grafted plants with ‘Strong Tosa’ wilted, which was determined as nonpathogenic. Grafting with ‘Strong Tosa’ rootstock resulted in reduced fruit total soluble solids (TSS) and consumer rated sensory properties.


Plants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 71
Author(s):  
María Carmen Antolín ◽  
María Toledo ◽  
Inmaculada Pascual ◽  
Juan José Irigoyen ◽  
Nieves Goicoechea

(1) Background: The associated increase in global mean surface temperature together with raised atmospheric carbon dioxide (CO2) concentration is exerting a profound influence on grapevine development (phenology) and grape quality. The exploitation of the local genetic diversity based on the recovery of ancient varieties has been proposed as an interesting option to cope with climate change and maintaining grape quality. Therefore, this research aimed to characterize the potential fruit quality of genotypes from seven local old grapevine varieties grown under climate change conditions. (2) Methods: The study was carried out on fruit-bearing cuttings (one cluster per plant) that were grown in pots in temperature gradient greenhouses (TGG). Two treatments were applied from fruit set to maturity: (1) ambient CO2 (400 ppm) and temperature (T) (ACAT) and (2) elevated CO2 (700 ppm) and temperature (T + 4 °C) (ECET). (3) Results: Results showed that some of the old genotypes tested remained quite stable during the climate change conditions in terms of fruit quality (mainly, total soluble solids and phenolic content) and of must antioxidant properties. (4) Conclusion: This research underlines the usefulness of exploiting local grapevine diversity to cope with climate change successfully, although further studies under field conditions and with whole plants are needed before extrapolating the results to the vineyard.


Author(s):  
João M. de S. Miranda ◽  
Ítalo H. L. Cavalcante ◽  
Inez V. de M. Oliveira ◽  
Paulo R. C. Lopes ◽  
Joston S. de Assis

ABSTRACTThe production of high quality fruits is a necessary factor for the adaptation and production of plant species with economic viability. Thus, an experiment was conducted from July 2012 to January 2013 to evaluate the fruit quality of the ‘Eva’ and ‘Princesa’ apple cultivars as a function of nitrogen fertilization in Petrolina, PE, Brazil. The experimental design consisted of randomized blocks, with treatments distributed in a factorial arrangement 2 x 4, corresponding to apple cultivars (Eva and Princesa) and nitrogen doses (40; 80; 120 and 160 kg of N ha-1), with four replications and three plants in each plot. The fruit characteristics, such as fruit mass, skin color (luminosity, chromaticity, and colour angle), size (width and length), pulp firmness, titratable acidity (TA), soluble solids (SS) and the SS/TA ratio, were recorded. Nitrogen doses do not affect fruit quality of studied apple cultivars. The fruit quality attributes are different between apple cultivars: fruit firmness, SS/TA ratio, fruit mass and fruit diameter are superior for Princesa cultivar, while the fruit length for Eva cultivar is superior.


2018 ◽  
Vol 45 (No. 2) ◽  
pp. 76-82 ◽  
Author(s):  
Rodica Soare ◽  
Maria Dinu ◽  
Cristina Babeanu

This study was aimed at observing the effect of the grafting of tomato plants on morphological (vegetative growth), production and nutritive characteristics (quantity and quality of production). For this purpose, the ‘Lorely F1’ cultivar was used as a scion grafted onto the ‘Beaufort’ rootstock. Plants were cultivated with a stem and two stems. The observations collected in this study were concerned with the characteristics of plant growth. The studied morphological characteristics were plant height, stem diameter and number of leaves, and the studied production characteristics were the characteristics of fructification and productivity (the average number of fruit per plant, the average weight of the fruit, production per plant). Particular attention was paid to the nutritional characteristics of the fruit, to the fruit quality (total soluble solids, total sugar, acidity, vitamin C, antioxidant activity (by the Trolox method) and the contents of lycopene and beta-carotene). The results showed that grafting positively influenced the growth and production characteristics. Grafting of tomato plants had an appreciable effect on the vegetative growth of the variant 2-grafted tomatoes with a stem. The best option in terms of productivity and production was the variant 3-grafted tomatoes with two stems, which yielded 9.2 kg per plant. Fruit quality was not improved in any of the grafted variants. 


Horticulturae ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 59
Author(s):  
Carlos Agius ◽  
Sabine von Tucher ◽  
Wilfried Rozhon

Hydroponic cultivation of vegetables avoids problems with soil-borne plant pathogens and may allow higher yield. In arid climates and particularly on islands, high concentrations of sodium chloride can be present in the groundwater. For instance, in many sites of Malta, the groundwater contains more than 10 mM sodium chloride. Here we investigated the effects of sodium chloride at levels typically found in Malta on yield, physiology and fruit quality of tomato, the economically most important vegetable. We selected cherry tomatoes since their production is attractive due to their high marketing value. While the yield declined at higher salinity levels tested (17 and 34 mM), the quality increased significantly as indicated by higher total soluble solids and fructose and glucose levels. The type of substrate—coco peat, perlite or Rockwool—had only minor effects. Although the concentration of citric acid and malic acid remained unaffected, the pH dropped by approximately 0.1 unit and the titratable acidity increased slightly. This might be explained by a high uptake of chloride but a lower increase of the sodium content and a reduced potassium level in the fruits, shifting the equilibrium of the organic acids more to their protonated forms. Proline increased significantly, while the level of glutamic acid, which is crucial for the taste, remained unchanged. Our results show that cherry tomatoes can be cultivated in nutrient solutions prepared with salt-containing groundwater, as found in Malta. The yield declined to some extent but the quality of the produced fruits was higher compared to cultivation in salt-free media.


2020 ◽  
Vol 8 (5) ◽  
pp. 551-557
Author(s):  
Gurjot Singh Pelia ◽  
◽  
A K Baswal ◽  

Prevalence of heavy soil is a major problem for fruit cultivation under Punjab conditions consequently leading to deficiency of several micro-nutrients including zinc (Zn), iron (Fe), and manganese (Mn) which adversely affects the growth and productivity. In this view, a study was planned to investigate the effect of foliar applications of zinc sulphate (ZnSO4), iron sulphate (FeSO4), and manganese sulphate (MnSO4) on vegetative growth, reproductive growth and fruit quality of papaya cv. Red lady. Plants sprayed with ZnSO4 (0.4 %) exhibited significantly highest plant height, plant girth, number of leaves, petiole length; initiated an earliest flowering and fruiting; and improved fruit quality viz., fruit weight, fruit length, titratable acidity, soluble solids concentrations, ascorbic acid content, total phenols content, and total carotenoids content as compared with the control and all other treatments. In conclusion, foliar application ZnSO4 (0.4 %) significantly improved plant growth and fruit quality in papaya cv. Red lady.


2019 ◽  
Vol 37 (3) ◽  
pp. 331-337
Author(s):  
Carlos Francisco Ragassi ◽  
Juliana Zucolotto ◽  
Lucas M Gomes ◽  
Cláudia SC Ribeiro ◽  
Nuno Rodrigo Madeira ◽  
...  

ABSTRACT Mechanizing the harvest of Jalapeño pepper involves changes in the production system. Spacings between plants in rows (10 to 40 cm; 60 cm fixed between rows) were evaluated in relation to plant architecture, productivity and fruit quality of cultivar BRS Sarakura during three years, in a randomized complete block design with five replicates. Productivity (41.9 to 78.8 t ha-1) and plant height (40.1 to 47.3 cm) responded linearly to density; on the other hand, productivity per plant responded negatively (0.48 to 1.04 kg plant-1). The stem first bifurcation height was little influenced. Fruit chemical analyses were carried out in the second year of the experiment; spacing significantly influenced pH (5.36 to 4.84), total titratable acidity (TTA) (0.48 to 0.36%) and total soluble solids (TSS)/TTA ratio (11.5 to 15.6); no influence on TSS (5.65%) was noticed, though. The increase of plant population provided an increase in productivity without affecting fruit quality; the highest height of the first bifurcation achieved may not be enough to enable mechanized harvesting of the cultivar BRS Sarakura.


1990 ◽  
Vol 115 (3) ◽  
pp. 390-394 ◽  
Author(s):  
Richard P. Marini ◽  
Ross E. Byers ◽  
Donald L. Sowers ◽  
Rodney W. Young

Five apple (Malus domestica Borkh.) cultivars were treated with dicamba at concentrations of 0 to 200 mg·liter-1 during 3 years. Although the response varied with cultivar, dose, and year, dicamba always delayed fruit abscission. At similar concentrations, dicamba usually reduced fruit drop more than NAA, but less than fenoprop. Dicamba at 10 mg·liter-1 effectively delayed drop of `Delicious', whereas 20 to 30 mg·liter-1 was required for `Red Yorking', `Rome', `Winesap', and `Stayman'. Dicamba did not influence flesh firmness, soluble solids content, water core, or starch content at harvest or after storage. Chemical names used: naphthaleneacetic acid (NAA); 2-(2,4,5-trichlorophenoxy)propionic acid (fenoprop); 3,6dichloro-2-methoxybenzoic acid (dicamba).


Sign in / Sign up

Export Citation Format

Share Document