scholarly journals Biocontrol Potential of Sclerotinia sclerotiorum and Physiological Changes in Soybean in Response to Butia archeri Palm Rhizobacteria

Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Luciana Cristina Vitorino ◽  
Fellipe Oliveira da Silva ◽  
Bárbara Gonçalves Cruvinel ◽  
Layara Alexandre Bessa ◽  
Márcio Rosa ◽  
...  

Sclerotinia sclerotiorum is a necrotrophic parasitic fungus that causes Sclerotinia stem rot (SSR), which is currently one of the most difficult agronomic crop diseases to control. A number of plants of the Brazilian Cerrado biome have been shown to be important sources of symbiotic microorganisms with biotechnological potential, so we decided to test the potential of bacteria isolated from the dwarf jelly palm, Butia archeri (Arecaceae) for the control of the pathogenic effects provoked by S. sclerotiorum. For this, we bioprimed seeds and evaluated the effects of this biopriming on the OJIP transient patterns prior to and following infection by the phytopathogen. Plants treated with the BA48R strain of Enterobacter sp., and in particular, those treated with the BA88R strain of Bacillus cereus presented the best results in terms of the loss/gain of the physiological and symptomatological variables evaluated. The plants bioprimed with BA88R presented high post-infection levels of total chlorophyll (33.35 FCIs) and chlorophyll a (26.39 FCIs), maintained a high Nitrogen Balance Index (NBI = 18.87), and synthesized low concentrations of flavonoids (1.39). These plants also maintained high levels of PIABS (1.111) and PITOTAL (1.300) following infection, and low levels of Di0/RC (0.602), which indicates that, in the presence S. sclerotiorum, the efficiency of the photosynthesis in the plants treated with these bacteria was less affected in the reaction centers, as confirmed by the negative amplitude recorded in the L band. The present study reconfirms the importance of the use of chlorophyll fluorescence for the diagnosis of disease and conditions of stress in crop plants, in addition to demonstrating the effectivenesss of the BA48R bacterial strain and, in particular, the BA88R strain on systemic resistance induction and suppression of S. sclerotiorum in Glycine max plants, with enormous potential for the development of more sustainable agricultural processes.

Plant Disease ◽  
2006 ◽  
Vol 90 (2) ◽  
pp. 215-219 ◽  
Author(s):  
C. A. Bradley ◽  
R. A. Henson ◽  
P. M. Porter ◽  
D. G. LeGare ◽  
L. E. del Río ◽  
...  

Sclerotinia stem rot (SSR), caused by Sclerotinia sclerotiorum, can be a devastating disease of canola (Brassica napus) in the northern United States. No canola cultivars are marketed as having resistance to SSR. Field trials were established in Red Lake Falls, MN (2001, 2003, and 2004) and Carrington, ND (2001, 2002, 2003, and 2004) to evaluate canola cultivars for resistance to SSR. These cultivars also were evaluated for resistance to SSR under controlled conditions using the following methods: petiole inoculation technique (PIT), detached leaf assay (DLA), and oxalic acid assay (OAA). Significant (P ≤ 0.05) differences were detected among cultivars for SSR and yield in the field trials, with SSR levels varying from low to high among years and locations. Cultivars with consistent high levels and low levels of SSR in the field trials were identified. Significant (P ≤ 0.05) differences were detected among cultivars for SSR using the PIT and OAA methods, but not the DLA method. No significant (P ≤ 0.05) correlations between SSR levels in the controlled studies with SSR levels in the field trials were detected; however, significant negative correlations were detected between SSR area under the disease process curve values from the PIT method and yield from Carrington, ND in 2001 and 2002. Although the PIT and OAA methods differentiated cultivars, neither method was able to predict the reaction of cultivars to SSR in the field, indicating that field screening for SSR resistance is still critical for the development of resistant cultivars.


2014 ◽  
Vol 6 (4) ◽  
pp. 91 ◽  
Author(s):  
Guanglong Cheng ◽  
Yun Huang ◽  
Hui Yang ◽  
Fan Liu

In order to explore the biocontrol potential of Streptomyces felleus YJ1 to sclerotinia stem rot of oilseed rape, we evaluated the effects of YJ1 as antagonistic strain on Sclerotinia sclerotiorum, including germination and formation of sclerotia, ascospore germination, mycelial growth and YJ1 colonization ability. We found the fermentation filtrate of YJ1 could inhibit sclerotia and ascospore germination and mycelial growth. In dual culture the inhibition zone diameter of YJ1 against S. sclerotiorum was 11.0 mm, and the inhibition rate reached to 80.26%. The ascospores germination was also significantly inhibited by YJ1 fermentation filtrate. In addition, YJ1 could colonize stably in rhizosphere and roots of rape. Otherwise, in the greenhouse we found the lesion would become smaller and slighter if the inoculated leaves were pretreated with YJ1 fermentation liquid. Therefore, our results strongly suggested that YJ1 was a promising biocontrol agent for control of oilseed rape sclerotinia stem rot.


2003 ◽  
Vol 3 (5-6) ◽  
pp. 303-310 ◽  
Author(s):  
S.-H. Yi ◽  
S. Ahmed ◽  
Y. Watanabe ◽  
K. Watari

Conventional arsenic removal processes have difficulty removing low concentrations of arsenic ion from water. Therefore, it is very hard to comply with stringent low levels of arsenic, such as below 10 μg/L. So, we have developed two arsenic removal processes which are able to comply with more stringent arsenic regulations. They are the MF membrane process combined with chemical sludge adsorption and NF membrane process equipped with the vibratory shear enhanced process (VSEP). In this paper, we examine the performance of these new processes for the removal of arsenic ion of a low concentration from water. We found that chemical sludge produced in the conventional rapid sand filtration plants can effectively remove As (V) ions of H2AsO4- and HAsO42- through anion exchange reaction. The removal efficiency of MF membrane process combined with chemical sludge adsorption increased to about 36%, compared to MF membrane alone. The strong shear force on the NF membrane surface produced by vibration on the VSEP causes the concentration polarization layer to thin through increased back transport velocity of particles. So, it can remove even dissolved constituents effectively. Therefore, As (V) ions such as H2AsO4- and HAsO42- can be removed. The concentration of As (V) ions decreased from 50 μg/L to below 10 μg/L and condensation factor in recirculating water increased up to 7 times by using NF membrane equipped with VSEP.


2019 ◽  
Vol 26 (10) ◽  
pp. 720-742 ◽  
Author(s):  
Kaushik Das ◽  
Karabi Datta ◽  
Subhasis Karmakar ◽  
Swapan K. Datta

Antimicrobial Peptides (AMPs) have diverse structures, varied modes of actions, and can inhibit the growth of a wide range of pathogens at low concentrations. Plants are constantly under attack by a wide range of phytopathogens causing massive yield losses worldwide. To combat these pathogens, nature has armed plants with a battery of defense responses including Antimicrobial Peptides (AMPs). These peptides form a vital component of the two-tier plant defense system. They are constitutively expressed as part of the pre-existing first line of defense against pathogen entry. When a pathogen overcomes this barrier, it faces the inducible defense system, which responds to specific molecular or effector patterns by launching an arsenal of defense responses including the production of AMPs. This review emphasizes the structural and functional aspects of different plant-derived AMPs, their homology with AMPs from other organisms, and how their biotechnological potential could generate durable resistance in a wide range of crops against different classes of phytopathogens in an environmentally friendly way without phenotypic cost.


Toxins ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 232
Author(s):  
Antonio Gallo ◽  
Francesca Ghilardelli ◽  
Alberto Stanislao Atzori ◽  
Severino Zara ◽  
Barbara Novak ◽  
...  

Sixty-four corn silages were characterized for chemicals, bacterial community, and concentrations of several fungal metabolites. Silages were grouped in five clusters, based on detected mycotoxins, and they were characterized for being contaminated by (1) low levels of Aspergillus- and Penicillium-mycotoxins; (2) low levels of fumonisins and other Fusarium-mycotoxins; (3) high levels of Aspergillus-mycotoxins; (4) high levels of non-regulated Fusarium-mycotoxins; (5) high levels of fumonisins and their metabolites. Altersetin was detected in clusters 1, 3, and 5. Rugulusovin or brevianamide F were detected in several samples, with the highest concentration in cluster 3. Emodin was detected in more than 50.0% of samples of clusters 1, 3 and 5, respectively. Kojic acid occurred mainly in clusters 1 and 2 at very low concentrations. Regarding Fusarium mycotoxins, high occurrences were observed for FB3, FB4, FA1, whereas the average concentrations of FB6 and FA2 were lower than 12.4 µg/kg dry matter. Emerging Fusarium-produced mycotoxins, such as siccanol, moniliformin, equisetin, epiequisetin and bikaverin were detected in the majority of analyzed corn silages. Pestalotin, oxaline, phenopirrozin and questiomycin A were detected at high incidences. Concluding, this work highlighted that corn silages could be contaminated by a high number of regulated and emerging mycotoxins.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Boregowda Nandini ◽  
Hariprasad Puttaswamy ◽  
Ramesh Kumar Saini ◽  
Harischandra Sripathy Prakash ◽  
Nagaraja Geetha

AbstractThe present work is aimed to examine the genetic variability and the distribution pattern of beneficial Trichoderma spp. isolated from rhizosphere samples and their mode of action in improving the plant health. A total of 131 suspected fungi were isolated from the rhizospheric soil and 91 isolates were confirmed as Trichoderma spp. T. asperellum and T. harzianum were found high in the frequency of occurrence. Genetic diversity analysis using RAPD and ISSR revealed the diverse distribution pattern of Trichoderma spp. indicating their capability to adapt to broad agroclimatic conditions. Analysis of genetic diversity using molecular markers revealed intra-species diversity of isolated Trichoderma spp. The frequency of pearl millet (PM) root colonization by Trichoderma spp. was found to be 100%. However, they showed varied results for indole acetic acid, siderophore, phosphate solubilization, β-1,3-glucanase, chitinase, cellulase, lipase, and protease activity. Downy mildew disease protection studies revealed a strong involvement of Trichoderma spp. in direct suppression of the pathogen (mean 37.41) in the rhizosphere followed by inducing systemic resistance. Our findings highlights the probable distribution and diversity profile of Trichoderma spp. as well as narrate the possible utilization of Trichoderma spp. as microbial fungicides in PM cultivation across different agroclimatic zones of India.


2003 ◽  
Vol 43 (2) ◽  
pp. 163 ◽  
Author(s):  
T. L. Hind ◽  
G. J. Ash ◽  
G. M. Murray

Surveys of petal infestation and stem infection conducted in 1998, 1999 and 2000 indicated that Sclerotinia sclerotiorum poses a threat to the Australian canola industry. Inoculum was present throughout all canola-growing regions of New South Wales and the stem disease was widespread throughout southern New South Wales. Percentage petal infestation increased over the 3 years surveyed with values ranging from 0 to 99.4%. The highest petal infestation values were observed in 2000 (maximum of 99.4%, mean of 82.2%), with lower mean values in 1998 (38.4%) and 1999 (49.6%). Stem infection ranged from 0 to 37.5% and most fields had less than 10% stem infection. Stem rot incidence before harvest did not relate to percentage petal infestation determined during flowering. This indicated that factors other than percentage petal infestation were important in influencing stem rot incidence. While there was no relationship between percentage petal infestation and stem rot incidence, stem infection never occurred without prior petal infestation.


PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0168850 ◽  
Author(s):  
Jawadayn Talib Alkooranee ◽  
Tamarah Raad Aledan ◽  
Ali Kadhim Ali ◽  
Guangyuan Lu ◽  
Xuekun Zhang ◽  
...  

2011 ◽  
Vol 61 (11) ◽  
pp. 2626-2631 ◽  
Author(s):  
K. S. Inglett ◽  
H. S. Bae ◽  
H. C. Aldrich ◽  
K. Hatfield ◽  
A. V. Ogram

A Cr(VI)-resistant, Gram-positive, spore-forming, obligate anaerobe, designated GCAF-1T, was isolated from chromium-contaminated soil by its ability to reduce Cr(VI) in low concentrations. Mixed acid fermentation during growth on glucose resulted in accumulation of acetate, butyrate, formate and lactate. Morphological studies indicated the presence of peritrichous flagella, pili and an S-layer. The major cellular fatty acids (>5 %) were C16 : 0, C14 : 0, summed feature 3 (comprising iso-C15 : 0 2-OH and/or C16 : 1ω7c), C18 : 1ω7c, C16 : 1ω9c, summed feature 4 (comprising iso-C17 : 1 I and/or anteiso-C17 : 1 B) and C18 : 1ω9c. The DNA G+C content of strain GCAF-1T was 30.7 mol%. Phylogenetic interference indicated that strain GCAF-1T clustered with group I of the genus Clostridium. Of strains within this cluster, strain GCAF-1T shared the highest 16S rRNA gene sequence similarities (98.1–98.9 %) with Clostridium beijerinckii DSM 791T, C. saccharobutylicum NCP 262T, C. saccharoperbutylacetonicum N1-4T, C. puniceum DSM 2619T and C. roseum DSM 51T. However, strain GCAF-1T could be clearly distinguished from its closest phylogenetic neighbours by low levels of DNA–DNA relatedness (<50 %) and some phenotypic features. Based on the evidence presented here, strain GCAF-1T ( = DSM 23318T  = KCTC 5935T) represents a novel species of the genus Clostridium, for which the name Clostridium chromiireducens sp. nov. is proposed.


Sign in / Sign up

Export Citation Format

Share Document