scholarly journals Effect of Nardostachys jatamansi DC. on Apoptosis, Inflammation and Oxidative Stress Induced by Doxorubicin in Wistar Rats

Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1579
Author(s):  
Mhaveer Singh ◽  
Mohammad Ahmed Khan ◽  
Kamal Y. T. ◽  
Javed Ahmad ◽  
Usama A. Fahmy ◽  
...  

The study aimed to investigate the protective action of jatamansi (Nardostachys jatamansi DC.) against doxorubicin cardiotoxicity. Methanolic extract of jatamansi (MEJ) was prepared and standardized using HPTLC fingerprinting, GC-MS chemoprofiling, total phenolic content, and antioxidant activity in vitro. Further in vivo activity was evaluated using rodent model. Animals were divided into five groups (n = 6) namely control (CNT) (Normal saline), toxicant (TOX, without any treatment), MEJ at low dose (JAT1), MEJ at high dose (JAT2), and standard desferrioxamine (STD). All groups except control received doxorubicin 2.5 mg per Kg intra-peritoneally for 3 weeks in twice a week regimen. After 3 weeks, the blood samples and cardiac tissues were collected from all groups for biochemical and histopathological evaluation. Treatment with MEJ at both dose levels exhibited significant reduction (p < 0.001 vs. toxicant) of serum CK-MB (heart creatine kinase), LDH (Lactate dehydrogenase) & HMG-CoA (3-hydroxy-3-methylglutaryl-coenzyme A) levels, and tissue MDA (melondialdehyde) level; insignificant difference was observed (p > 0.05) in TNF-alpha (tumour necrosis factor), IL-6 (interleukine-6) levels and caspase activity as compared to TOX. Histopathological evaluation of cardiac tissues of different treatment groups further reinforced the findings of biochemical estimation. This study concludes that jatamansi can protect cardiac tissues from oxidative stress-induced cell injury and lipid peroxidation as well as against inflammatory and apoptotic effects on cardiac tissues.

2007 ◽  
Vol 85 (10) ◽  
pp. 1047-1051 ◽  
Author(s):  
Daniel Francés ◽  
M. Teresa Ronco ◽  
Elena Ochoa ◽  
M. Luján Alvarez ◽  
Ariel Quiroga ◽  
...  

The aim of this study was to evaluate the influence of partial hepatectomy prior to cell isolation on hepatocytes in vitro. We characterized the possible changes of various stress oxidative parameters within the first 24 h after seeding. Male Wistar rats served as donors. Hepatocytes were isolated by collagenase digestion from either liver of simulated surgery (SH) or from liver 1 h after 70% hepatectomy (PH), and the changes in stress parameters were analyzed after 1, 3, 18, and 24 h in culture. At 24 h, only hepatocytes from PH maintained significantly increased reactive oxygen species production, oxidized glutathione percentage, and Cu/Zn superoxide dismutase and catalase activities. Our results show that hepatocytes suffer significant cell injury as a result of the isolation procedure, but primary cultured cells from SH metabolically recover from this stress after 18 h. After this time, primary culture hepatocytes primed by PH maintain their in vivo-like metabolic activities (increase in both oxidative stress and antioxidant status).


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
TM Archana ◽  
K Soumya ◽  
Jesna James ◽  
Sudheesh Sudhakaran

Abstract Background Hyperglycemia is the hallmark of diabetes, and the associated oxidative stress is a major concern that invites an array of diabetic complications. The traditional practices of medicare are of great, current interest due to the high cost and side effects of conventional diabetic medications. The present in vitro study focuses on evaluating the potential of various A. occidentale root extracts for their antihyperglycemic and antioxidant potentials. Materials and methods The four different solvent extracts petroleum ether (PEAO), chloroform (CHAO), ethyl acetate (EAAO), and 80 % methanol (80 % MAO) of A. occidentale roots were evaluated for their total phenolic, flavonoid, and antioxidant capacity. Using MIN6 pancreatic β-cells, the cytotoxicity of the extracts was evaluated by MTT assay and the antidiabetic potential by quantifying the insulin levels by ELISA at a higher concentration of glucose. The effect of 80 % MAO on INS gene expression was determined by qRT PCR analysis. Results Among the four different solvent extracts of A. occidentale roots, 80 % MAO showed the highest concentration of phenolics (437.33 ± 0.03 µg GAE/mg), CHAO to be a rich source of flavonoids (46.04 ± 0.1 µg QE/mg) and with the highest total antioxidant capacity (1865.33 ± 0.09 µg AAE/ mg). Evaluation of the free radical scavenging and reducing properties of the extracts indicated 80 % MAO to exhibit the highest activity. The MTT assay revealed the least cytotoxicity of all four extracts. 80 % MAO enhanced INS up-regulation as well as insulin secretion even under high glucose concentration (27mM). Conclusions The present study demonstrated that the A. occidentale root extracts have effective antihyperglycemic and antioxidative properties, together with the potential of normalizing the insulin secretory system of β-cells. Above mentioned properties have to be studied further by identifying the active principles of A. occidentale root extracts and in vivo effects. The prospect of the present study is identifying drug leads for better management of diabetes from the A. occidentale root extracts. Graphical abstract


Foods ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 5
Author(s):  
Luisa Pozzo ◽  
Rossella Russo ◽  
Stefania Frassinetti ◽  
Francesco Vizzarri ◽  
Július Árvay ◽  
...  

Polyphenol-rich foods could have a pivotal function in the prevention of oxidative stress-based pathologies and antibacterial action. The purpose of this study was to investigate the in vitro antimicrobial activity, as well as the in vitro and In Vivo antioxidant capacities of wild Prunus spinosa L. fruit (PSF) from the southeast regions of Italy. The total phenolic content (TPC) was quantified, and the single polyphenols were analyzed by HPLC-DAD, showing high rutin and 4-hydroxybenzoic acid levels, followed by gallic and trans-sinapic acids. PSF extract demonstrated antimicrobial activity against some potentially pathogenic Gram-negative and Gram-positive bacteria. Besides, we investigated the cellular antioxidant activity (CAA) and the hemolysis inhibition of PSF extract on human erythrocytes, evidencing both a good antioxidant power and a marked hemolysis inhibition. Furthermore, an In Vivo experiment with oxidative stress-induced rats treated with a high-fat diet (HFD) and a low dose of streptozotocin (STZ) demonstrated that PSF has a dose-dependent antioxidant capacity both in liver and in brain. In conclusion, the wild Italian Prunus spinosa L. fruit could be considered a potentially useful material for both nutraceutical and food industries because of its antioxidant and antimicrobial effects.


2020 ◽  
Vol 11 ◽  
Author(s):  
Hao Wang ◽  
Weiwei Xia ◽  
Guangfeng Long ◽  
Zhiyin Pei ◽  
Yuanyuan Li ◽  
...  

Cisplatin is extensively used and is highly effective in clinical oncology; nevertheless, nephrotoxicity has severely limited its widespread utility. Isoquercitrin (IQC), a natural flavonoid widely found in herbage, is well known and recognized for its antioxidant, anti-inflammatory, and anti-apoptotic properties. However, the potential effects and mechanism of IQC in cisplatin-induced acute kidney diseases remain unknown. In this study, we postulated the potential effects and mechanism of IQC upon cisplatin exposure in vivo and in vitro. For the in vivo study, C57BL/6J mice were pretreated with IQC or saline (50 mg/kg/day) by gavage for 3 days before cisplatin single injection (25 mg/kg). Renal function, apoptosis, inflammation, oxidative stress and p-ERK were measured to evaluate kidney injury. In vitro, mouse proximal tubular cells (mPTCs) and human proximal tubule epithelial cell line (HK2) were pretreated with or without IQC (80 μM for mPTCs and 120 μM for HK2) for 2 h and then co-administrated with cisplatin for another 24 h. Apoptosis, inflammation, ROS and p-ERK of cells were also measured. In vivo, IQC administration strikingly reduced cisplatin-induced nephrotoxicity as evidenced by the improvement in renal function (serum creatinine and blood urea nitrogen), kidney histology (PAS staining), apoptotic molecules (cleaved caspase-3, caspase-8, Bax and Bcl-2), inflammatory cytokines (IL-1β, IL-6, TNF-α, and COX-2), oxidative stress (MDA and total glutathione) and p-ERK. In line with in vivo findings, IQC markedly protected against cisplatin-induced cell injury in mPTCs and HK2 cells. Collectively, these findings demonstrated that IQC administration could significantly protect against cisplatin nephrotoxicity possibly through ameliorating apoptosis, inflammation and oxidative stress accompanied by cross talk with p-ERK. Furthermore, IQC may have potential therapeutic uses in the treatment of cisplatin-induced acute kidney injury.


2016 ◽  
Vol 4 (1) ◽  
pp. 19
Author(s):  
Roma Ghai ◽  
Kandasamy Nagarajan ◽  
Jitendra Singh ◽  
Shiwam Swarup ◽  
Minu Keshari

<p>Free radicals mediated oxidative stress is the major risk factor for many chronic diseases like atherosclerosis, diabetes mellitus, arthritis, cancer, ageing and neurodegenerative diseases. Therapy with anti-oxidants is gradually gaining lot of importance for treatment of such diseases. Hydro-alcoholic extract of <em>Eugenia caryophyllus</em> was studied for its <em>in-vivo</em> antioxidant activity using two different animal models viz. Triton induced hyperlipidemia and High fat diet induced hyperlipidemia. Total phenolic content and total flavonoid content, DPPH assay was also carried out for <em>in vitro</em> anti-oxidant efficacy. Total protein, lipid peroxidation (MDA), reduced glutathione, superoxide dismutase and catalase were evaluated in the liver tissue in Triton induced hyperlipidemia and diet induced hyperlipidemia models. The study findings indicated significant <em>in-vivo</em> and <em>in-vitro</em> antioxidant property that may be related to the amount of polyphenols and flavonoids present in the extract. These results clearly indicate that <em>Eugenia caryophyllus</em> is effective against free radical mediated oxidative stress.</p>


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Xiong Yang ◽  
Hao Ding ◽  
Zhenbang Qin ◽  
Changwen Zhang ◽  
Shiyong Qi ◽  
...  

Oxidative stress is a causal factor and key promoter of urolithiasis associated with renal tubular epithelium cell injury. The present study was designed to investigate the preventive effects of metformin on renal tubular cell injury induced by oxalate and stone formation in a hyperoxaluric rat model. MTT assays were carried out to determine the protection of metformin from oxalate-induced cytotoxicity. The intracellular superoxide dismutase (SOD) activities and malondialdehyde (MDA) levels were measured in vitro. Male Sprague-Dawley rats were divided into control group, ethylene glycol (EG) treated group, and EG + metformin treated group. Oxidative stress and crystal formations were evaluated in renal tissues after 8-week treatment. Metformin significantly inhibited the decrease of the viability in MDCK cells and HK-2 cells induced by oxalate. Besides, metformin markedly prevented the increased concentration of MDA and the decreased tendency of SOD in oxalate-induced MDCK cells and HK-2 cells. In vivo, the increased MDA levels and the reduction of SOD activity were detected in the EG treated group compared with controls, while these parameters reversed in the EG + metformin treated group. Kidney crystal formation in the EG + metformin treated group was decreased significantly compared with the EG treated group. Metformin suppressed urinary crystal deposit formation through renal tubular cell protection and antioxidative effects.


2004 ◽  
Vol 92 (6) ◽  
pp. 887-894 ◽  
Author(s):  
R.-F. S. Huang ◽  
H.-C. Yaong ◽  
S.-C. Chen ◽  
Y.-F. Lu

Folate has recently been proposed as a new antioxidant. Folate supplementation may have a protective effect in counteracting oxidant-induced apoptotic damage. The present studies were undertaken to examine whether there is a direct link between folate levels, antioxidant capability and reduced apoptotic damage. Using anin vitrocellular model of 7-ketocholesterol (KC)-induced apoptosis, U937 cells were pre-cultured with a folate-deficient medium supplemented with various levels of folate (2–1500μmol/l) before treatment with 7-KC. Apoptotic markers, mitochondria-associated death signals and levels of reactive oxygen species were assayed. After treatment with 7-KC for 30h, low and high levels of folate supplementation significantly (P<0.05) reduced nuclear DNA loss. Only high levels of folate supplementation (>1000μmol/l) were effective in counteracting 7-KC-promoted apoptotic membrane phosphatidylserine exposure and DNA laddering. The attenuation of 7-KC-induced apoptotic damage by high-dose folate supplementation coincided with a partial normalization of mitochondria membrane potential dissipation, a suppression of cytochromecrelease and an inhibition of procaspase 3 activation. The prevention of mitochondrial dysfunctions and apoptotic processes was associated with antioxidant actions of high-dose folate by a marked scavenging of intracellular superoxide. Collectively, our present results demonstrate thatin vitrofolate supplementation exerts differentially protective effects against 7-KC-induced damage. High-dose supplementation alleviates oxidative stress, mitochondria-associated death signalling and apoptosis induced by 7-KC. However, thein vivorelevance is not clear and requires further study.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Anca D. Farcaș ◽  
Augustin C. Moț ◽  
Alina E. Pârvu ◽  
Vlad Al. Toma ◽  
Mirel A. Popa ◽  
...  

Known for centuries throughout the world, Plantago species have long been used as traditional herbal remedies for many diseases related to inflammatory conditions of the skin, respiratory and digestive tract, or even malignancy. This study is aimed first at investigating the in vitro antioxidant and regenerative effects of Plantago sempervirens Crantz hydroalcoholic extract followed by an in vivo experiment using a turpentine oil-induced inflammation model. The in vitro evaluation for antioxidant activity was performed using classical assays such as DPPH and TEAC scavenging assays but also EPR, and the total phenolic content was determined using the Folin-Ciocalteu reagent. The wound healing assay was performed on human cells (Human EA.hy926). Besides, the prooxidant activity was determined using a method which involves in situ free radical generation by laccase and the oxidation of haemoglobin. On turpentine oil-induced inflammation in rats, the in vivo effects of three doses of P. sempervirens extracts (100%, 50%, and 25%) were assessed by measuring oxidative stress (MDA, TOS, OSI, NO, CAT, and SOD) and inflammatory (CRP, WBC, and NEU) parameters. Having a rich polyphenolic content, the xerophyte P. sempervirens exhibited a strong in vitro antioxidant activity by scavenging radicals, enhancing cell regeneration, and reducing oxidative stress markers. Diluted P. sempervirens extract (25%) exhibited the best antioxidant, wound healing, and anti-inflammatory activity.


Author(s):  
Claudio M. Sanguinetti

Oxidants have long been recognized to have an important role in the pathogenesis of COPD, and in this cigarette smoke has a strong responsibility, because it generates a conspicuous amount of oxidant radicals able to modify the structure of the respiratory tract and to enhance several mechanisms that sustain lung inflammation in COPD. In fact, oxidative stress is highly increased in COPD and natural antioxidant capacities, mainly afforded by reduced glutathione, are often overcome. Thus an exogenous supplementation of antioxidant compounds is mandatory to at least partially counteract the oxidative stress. For this purpose N-acetylcysteine has great potentialities due to its capacity of directly contrasting oxidants with its free thiols, and to the possibility it has of acting as donor of cysteine precursors aimed at glutathione restoration. Many studies in vitro and in vivo have already demonstrated the antioxidant capacity of NAC. Many clinical studies have long been performed to explore the efficacy of NAC in COPD with altern results, especially when the drug was used at very low dosage and/or for a short period of time. More recently, several trials have been conducted to verify the appropriateness of using high-dose NAC in COPD, above all to decrease the exacerbations rate. The results have been encouraging, even if some of the data come from the most widely sized trials that have been conducted in Chinese populations. Although other evidence should be necessary to confirm the results in other populations of patients, high-dose oral NAC nevertheless offers interesting perspectives as add-on therapy for COPD patients.


Sign in / Sign up

Export Citation Format

Share Document