scholarly journals Improve the Performance of Mechanoelectrical Transduction of Ionic Polymer-Metal Composites Based on Ordered Nafion Nanofibres by Electrospinning

Polymers ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 803 ◽  
Author(s):  
Yang Zhao ◽  
Jiazheng Sheng ◽  
Di Xu ◽  
Minzhong Gao ◽  
Qinglong Meng ◽  
...  

An ionic polymer–metal composite (IPMC) is a kind of soft material. The applications of IPMC in actuators, environmental sensing, and energy harvesting are currently increasing rapidly. In this study, an ordered Nafion nanofibre mat prepared by electrospinning was used to investigate the characteristics of the mechanoelectrical transduction of IPMC. The morphologies of the Nafion nanofibre mat were characterized. The proton conductivity, ion exchange capacities, and water uptake potential of the Nafion nanofibre mat were compared to traditional IPMC, respectively. A novel mechanism of Nafion nanofibre IPMC was designed and the open circuit voltage and short circuit current were measured. The maximum voltage value reached 100 mv. The output power was 3.63 nw and the power density was up to 42.4 μW/Kg under the load resistance. The Nafion nanofibre mat demonstrates excellent mechanoelectrcical transduction behavior compared to traditional IPMC and could be used for the development of self-powered devices in the future.

Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 414 ◽  
Author(s):  
Nay Yee Win Zaw ◽  
Hyeonhee Roh ◽  
Inkyum Kim ◽  
Tae Sik Goh ◽  
Daewon Kim

Wind is a great sustainable energy source for harvesting due to its abundant characteristic. Typically, large space, loud noise, and heavy equipment are essential for a general wind power plant and it is solely operated by big-scale wind. However, wind energy can be efficiently harvested by utilizing the triboelectric nanogenerator due to its abundance, ubiquity, and environmentally friendliness. Furthermore, a few previously reported wind-driven triboelectric nanogenerators, which have the bulk fluttering layer by wind, still show difficulty in generating electricity under the conditions of weak wind because of the static friction arisen from the inherent structure. In this case, the output performance is deteriorated as well as the generator cannot operate completely. In this work, a wind-driven triboelectric nanogenerator (wind-TENG) based on the fluttering of the PTFE strips is proposed to solve the aforementioned problems. At the minimum operating wind pressure of 0.05 MPa, this wind-driven TENG delivers the open-circuit voltage of 3.5 V, short-circuit current of 300 nA, and the associated output power density of 0.64 mW/m2 at the external load resistance of 5 MΩ. Such conditions can be used to light up seven LEDs. Moreover, this wind-TENG has been utilized as a direction sensor which can sense the direction at which the wind is applied. This work thus provides the potential application of the wind-TENG as both self-driven electronics and a self-powered sensor system for detecting the direction under environmental wind.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhuang Hui ◽  
Ming Xiao ◽  
Daozhi Shen ◽  
Jiayun Feng ◽  
Peng Peng ◽  
...  

Abstract With the increase in the use of electronic devices in many different environments, a need has arisen for an easily implemented method for the rapid, sensitive detection of liquids in the vicinity of electronic components. In this work, a high-performance power generator that combines carbon nanoparticles and TiO2 nanowires has been fabricated by sequential electrophoretic deposition (EPD). The open-circuit voltage and short-circuit current of a single generator are found to exceed 0.7 V and 100 μA when 6 μL of water was applied. The generator is also found to have a stable and reproducible response to other liquids. An output voltage of 0.3 V was obtained after 244, 876, 931, and 184 μs, on exposure of the generator to 6 μL of water, ethanol, acetone, and methanol, respectively. The fast response time and high sensitivity to liquids show that the device has great potential for the detection of small quantities of liquid. In addition, the simple easily implemented sequential EPD method ensures the high mechanical strength of the device. This compact, reliable device provides a new method for the sensitive, rapid detection of extraneous liquids before they can impact the performance of electronic circuits, particularly those on printed circuit board.


Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2020 ◽  
Vol 31 (17) ◽  
pp. 1973-1985
Author(s):  
Hojat Zamyad ◽  
Nadia Naghavi ◽  
Reza Godaz ◽  
Reza Monsefi

The high application potential of ionic polymer–metal composites has made the behavior identification of this group of smart materials an attractive area. So far, several models have been proposed to predict the bending of an ionic polymer–metal composite actuator, but these models have some weaknesses, the most important of them are the use of output data (in autoregressive models), high complexity to achieve a proper precision (in non-autoregressive models), and lack of compatibility with the behavioral nature of the material. In this article, we present a hybrid model of parallel non-autoregressive recurrent networks with internal memory cells to overcome existing weaknesses. The validation results on experimental data show that the proposed model has acceptable accuracy and flexibility. Moreover, simplicity and compatibility with the behavioral nature of the material promote using the proposed model in practical applications.


2010 ◽  
Vol 670 ◽  
pp. 369-378 ◽  
Author(s):  
Minoru Sasaki ◽  
Yusuke Onouchi ◽  
Hirohisa Tamagawa ◽  
Satoshi Ito

Mathematical models predicting the behaviour of IMPCs (Ionic Polymer-Metal Composites ) were built and their validity was verified computationally as well as experimentally. A transfer function associating the applied input voltage with the IPMC tip displacement was derived based on results obtained by vibration analysis. Employing the derived transfer function, three mathematical models, based on feed forward, feedback and two-degree-of-freedom models, were formulated. Computational and experimental verification of these models revealed that the feedback and two-degree-of-freedom models were capable of high performance in controlling the bending of an IPMC.


2011 ◽  
Vol 110-116 ◽  
pp. 1199-1206 ◽  
Author(s):  
Dillip Kumar Biswal ◽  
Dibakar Bandopadhya ◽  
Santosha Kumar Dwivedy

Till to date, fabrication of Ionic Polymer-Metal Composites (IPMC) are carried out successfully using noble metal such as platinum/gold as the surface electrode. In this work we have proposed cost effective fabrication method for IPMC actuator using non-precious metal electrode of silver (Ag). Chemical decomposition method is followed using Nafion as the ion exchange membrane to fabricate pure Ag-electrode IPMC. Microscopic and morphological analyses reveal that, silver particles penetrate well through the surface of Nafion membrane. The bending deformation measurement and analysis of the thermo-mechanical properties of the fabricated IPMC is carried out. The experiment results and performance of the IPMC actuator confirm that the fabrication of pure Ag-IPMC is feasible and can be used as artificial muscle material.


2012 ◽  
Vol 11 (1) ◽  
pp. 249-270 ◽  
Author(s):  
David Pugal ◽  
Pavel Solin ◽  
Kwang J. Kim ◽  
Alvo Aabloo

AbstractWe are concerned with a model of ionic polymer-metal composite (IPMC) materials that consists of a coupled system of the Poisson and Nernst-Planck equations, discretized by means of the finite element method (FEM). We show that due to the transient character of the problem it is efficient to use adaptive algorithms that are capable of changing the mesh dynamically in time. We also show that due to large qualitative and quantitative differences between the two solution components, it is efficient to approximate them on different meshes using a novel adaptive multimeshhp-FEM. The study is accompanied with numerous computations and comparisons of the adaptive multimeshhp-FEM with several other adaptive FEM algorithms.


Author(s):  
Montassar Aidi Sharif ◽  
Matthew J. McHenry ◽  
Xiaobo Tan

It is of interest to exploit the insight from the lateral line system of fish for flow sensing applications. The lateral line consists of arrays of flow sensors, known as neuromasts, with hair cells encased within a gel-like structure called cupula. There are two types of neuromasts, superficial neuromasts, which reside on the surface, and canal neuromasts, which are recessed within a channel with its ends open at the body’s surface. In this work we investigate the modeling of a canal-type artificial lateral line system. The canal is filled with viscous fluid to emulate its biological counterpart. The artificial neuromast consists of an ionic polymer-metal composite (IPMC) sensor embedded within a soft molded cupula structure. The displacement of the cupula structure and the resulting short-circuit current of the IPMC sensor under an oscillatory flow are modeled and solved with finite-element methods. The Poisson-Nernst-Planck (PNP) model is used to describe the fundamental physics within the IPMC, where the bending stimulus due to the cupula displacement is coupled to the PNP model through the cation convective flux term. Comparison of the numerically computed cupula displacement with an analytical approximation is conducted. The effects of material stiffness and and device size on the device sensitivity are further explored.


2019 ◽  
Vol 23 ◽  
pp. 64-74
Author(s):  
Ponnusamy Senthil Kumar ◽  
P.R. Yaashikaa

Electroactive polymers, or EAPs, are polymers that show an adjustment fit as a fiddle when invigorated by an electric field. Ionic polymer metal composites (IPMCs) are electro-dynamic polymers with great electromechanical coupling properties. They are proficient applicants in many progressed innovative applications, for example, actuators, artificial muscles, biomimetic sensors, and so forth. Type of membrane and electrodes determines the morphology and structure of IPMCs. IPMCs can be prepared using physical loading, chemical deposition and electroplating methods. The assembling of anodes for IPMCs is exceptionally basic in their electromechanical coupling. Optimization of force, determination of cations and molecule size dispersal inside the IPMC structure, and so on are the different components, which decides their proficiency. An ionic polymer-metal composite (IPMC) comprising of a thin Nafion sheet, platinum plated on the two side faces, experiences extensive twisting movement when an electric field is connected over its thickness. Then again, a voltage is created over its appearances when it is all of a sudden bends. IPMCs are best known for their proving advantages such as biocompactible, low activating voltage and more power efficiency


2010 ◽  
Vol 59 (3) ◽  
pp. 279-289 ◽  
Author(s):  
Deivid Pugal ◽  
Kwangmok Jung ◽  
Alvo Aabloo ◽  
Kwang J Kim

Sign in / Sign up

Export Citation Format

Share Document