scholarly journals Recent Advances of the Polymer Micro/Nanofiber Fluorescence Waveguide

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1086 ◽  
Author(s):  
Hongyan Xia ◽  
Tingkuo Chen ◽  
Chang Hu ◽  
Kang Xie

Subwavelength optical micro/nanofibers have several advantages, such as compact optical wave field and large specific surface area, which make them widely used as basic building blocks in the field of micro-nano optical waveguide and photonic devices. Among them, polymer micro/nanofibers are among the first choices for constructing micro-nano photonic components and miniaturized integrated optical paths, as they have good mechanical properties and tunable photonic properties. At the same time, the structures of polymer chains, aggregated structures, and artificial microstructures all have unique effects on photons. These waveguided micro/nanofibers can be made up of not only luminescent conjugated polymers, but also nonluminous matrix polymers doped with luminescent dyes (organic and inorganic luminescent particles, etc.) due to the outstanding compatibility of polymers. This paper summarizes the recent progress of the light-propagated mechanism, novel design, controllable fabrication, optical modulation, high performance, and wide applications of the polymer micro/nanofiber fluorescence waveguide. The focus is on the methods for simplifying the preparation process and modulating the waveguided photon parameters. In addition, developing new polymer materials for optical transmission and improving transmission efficiency is discussed in detail. It is proposed that the multifunctional heterojunctions based on the arrangement and combination of polymer-waveguided micro/nanofibers would be an important trend toward the construction of more novel and complex photonic devices. It is of great significance to study and optimize the optical waveguide and photonic components of polymer micro/nanofibers for the development of intelligent optical chips and miniaturized integrated optical circuits.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 829
Author(s):  
Keling Hu

Aromatic copolyesters, derived from bio-based nipagin and eugenol, were synthesized with renewable 1,6-hexandiol as the spacer. Number-average, weight-average molecular weights (Mn, Mw), and polydispersity (D) values were determined by size exclusion chromatography (SEC). Chemical structures were confirmed by 1H NMR and 13C NMR spectroscopies. Chemical microstructure analysis suggested that the nipagin and eugenol-derived units were inserted into polymer chains in an arbitrary manner. Due to the short chain of 1,6-hexanediol, the splitting of magnetically different methylene carbons, adjacent to the alcohol-oxygens, proved to be more sensitive towards sequence distributions, at the dyed level, than those from 1,10-decanediol. Thermal gravimetric analysis (TGA) demonstrated that these polyester materials have excellent thermal stability (>360 °C), regardless of the content of eugenol-derived composition incorporated. Differential scanning calorimetric (DSC) and wide-angle X-ray diffraction (WXRD) experiments revealed the semicrystalline nature for this kind of copolyesters. The crystallinities gradually decreased with the increase of eugenol-derived composition. Thermal and crystalline properties were well discussed from the microscopic perspective. The point of this work lies in establishing guidance for future design and modification of high-performance polymer materials from the microscopic perspective.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Yifei Zhang ◽  
Jeffrey B. Chou ◽  
Junying Li ◽  
Huashan Li ◽  
Qingyang Du ◽  
...  

Abstract Optical phase change materials (O-PCMs), a unique group of materials featuring exceptional optical property contrast upon a solid-state phase transition, have found widespread adoption in photonic applications such as switches, routers and reconfigurable meta-optics. Current O-PCMs, such as Ge–Sb–Te (GST), exhibit large contrast of both refractive index (Δn) and optical loss (Δk), simultaneously. The coupling of both optical properties fundamentally limits the performance of many applications. Here we introduce a new class of O-PCMs based on Ge–Sb–Se–Te (GSST) which breaks this traditional coupling. The optimized alloy, Ge2Sb2Se4Te1, combines broadband transparency (1–18.5 μm), large optical contrast (Δn = 2.0), and significantly improved glass forming ability, enabling an entirely new range of infrared and thermal photonic devices. We further demonstrate nonvolatile integrated optical switches with record low loss and large contrast ratio and an electrically-addressed spatial light modulator pixel, thereby validating its promise as a material for scalable nonvolatile photonics.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Denis M. Zhilin ◽  
Andrij Pich

Abstract Nano- and microgels are promising soft polymer materials for different application fields: stabilizers, sensors, catalysts, selective sorbents, drug delivery carriers etc. They are composed of cross-linked polymer chains swollen with a solvent. The building blocks, synthesis approaches and architecture of nano- and microgels are reviewed. The mechanisms of responsiveness to various stimuli are described, examples of applications are provided. Micro- and nanogels are good objects for learning projects and the ideas for learning projects with microgels are described.


2007 ◽  
Vol 60 (7) ◽  
pp. 484 ◽  
Author(s):  
Baohua Jia ◽  
Jiafang Li ◽  
Min Gu

Fabrication of micro- or nano-scale photonic devices in polymer materials to control and manipulate light propagation represents a hot topic nowadays. Compared with conventional semiconductor materials, polymers are easy to prepare and have the flexibility of incorporating active materials to realise various functionalities. As one of the most powerful tools in micro-optical fabrication, the two-photon polymerization technique has been widely employed recently to produce multifarious photonic devices, particularly the photonic crystals, which are promising candidates for integrated optical devices. In this article the recent advances in the fabrication of three-dimensional photonic devices such as diffractive optical elements, photonic crystals, and superprisms in polymer materials using the two-photon polymerization technique are reviewed. In particular, the fabrication of photonic crystals in nanocomposite polymers, which are formed by incorporating nanocrystal quantum dots into polymer materials, is demonstrated, providing an interesting physical platform for the investigation into new types of active micro-devices.


Nanophotonics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1321-1340
Author(s):  
Lu Sun ◽  
Yong Zhang ◽  
Yu He ◽  
Hongwei Wang ◽  
Yikai Su

AbstractSubwavelength structures such as subwavelength gratings (SWGs) and subwavelength metamaterials are capable of tailoring the optical properties of materials and controlling the flow of light at the nanoscale. The effective indices of the subwavelength structured strip and slab waveguides can be changed in a wide range by choosing an appropriate duty cycle or a filling factor of silicon, which provides an effective method to manipulate the optical field and achieve effective index matching for functional devices. Recent advances in nanofabrication techniques have made it possible to implement subwavelength structures in silicon strip and slab waveguides. Here we review various approaches used to design subwavelength structures and achieve exotic optical responses and discuss how these structures can be used to realize high-performance silicon photonic devices. Both one-dimensional SWG devices and two-dimensional subwavelength metamaterial devices are covered in this review, including subwavelength structure–based polarization handling devices, mode manipulation devices, and building blocks for integrated optical interconnects. Perspectives on subwavelength structured silicon photonic devices are also discussed.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2942
Author(s):  
Bhausaheb V. Tawade ◽  
Ikeoluwa E. Apata ◽  
Nihar Pradhan ◽  
Alamgir Karim ◽  
Dharmaraj Raghavan

The synthesis of polymer-grafted nanoparticles (PGNPs) or hairy nanoparticles (HNPs) by tethering of polymer chains to the surface of nanoparticles is an important technique to obtain nanostructured hybrid materials that have been widely used in the formulation of advanced polymer nanocomposites. Ceramic-based polymer nanocomposites integrate key attributes of polymer and ceramic nanomaterial to improve the dielectric properties such as breakdown strength, energy density and dielectric loss. This review describes the ”grafting from” and ”grafting to” approaches commonly adopted to graft polymer chains on NPs pertaining to nano-dielectrics. The article also covers various surface initiated controlled radical polymerization techniques, along with templated approaches for grafting of polymer chains onto SiO2, TiO2, BaTiO3, and Al2O3 nanomaterials. As a look towards applications, an outlook on high-performance polymer nanocomposite capacitors for the design of high energy density pulsed power thin-film capacitors is also presented.


2021 ◽  
Vol 11 (9) ◽  
pp. 4017
Author(s):  
Yongjun Guo ◽  
Yuhao Guo ◽  
Chunshu Li ◽  
Hao Zhang ◽  
Xiaoyan Zhou ◽  
...  

Integrated optical phased arrays can be used for beam shaping and steering with a small footprint, lightweight, high mechanical stability, low price, and high-yield, benefiting from the mature CMOS-compatible fabrication. This paper reviews the development of integrated optical phased arrays in recent years. The principles, building blocks, and configurations of integrated optical phased arrays for beam forming and steering are presented. Various material platforms can be used to build integrated optical phased arrays, e.g., silicon photonics platforms, III/V platforms, and III–V/silicon hybrid platforms. Integrated optical phased arrays can be implemented in the visible, near-infrared, and mid-infrared spectral ranges. The main performance parameters, such as field of view, beamwidth, sidelobe suppression, modulation speed, power consumption, scalability, and so on, are discussed in detail. Some of the typical applications of integrated optical phased arrays, such as free-space communication, light detection and ranging, imaging, and biological sensing, are shown, with future perspectives provided at the end.


Optik ◽  
2021 ◽  
pp. 167734
Author(s):  
Hongru Zhang ◽  
Guofang Fan ◽  
Xiaoyu Cai ◽  
Jiasi Wei ◽  
Gaoshan Jing ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Esteban Gonzalez-Valencia ◽  
Ignacio Del Villar ◽  
Pedro Torres

AbstractWith the goal of ultimate control over the light propagation, photonic crystals currently represent the primary building blocks for novel nanophotonic devices. Bloch surface waves (BSWs) in periodic dielectric multilayer structures with a surface defect is a well-known phenomenon, which implies new opportunities for controlling the light propagation and has many applications in the physical and biological science. However, most of the reported structures based on BSWs require depositing a large number of alternating layers or exploiting a large refractive index (RI) contrast between the materials constituting the multilayer structure, thereby increasing the complexity and costs of manufacturing. The combination of fiber–optic-based platforms with nanotechnology is opening the opportunity for the development of high-performance photonic devices that enhance the light-matter interaction in a strong way compared to other optical platforms. Here, we report a BSW-supporting platform that uses geometrically modified commercial optical fibers such as D-shaped optical fibers, where a few-layer structure is deposited on its flat surface using metal oxides with a moderate difference in RI. In this novel fiber optic platform, BSWs are excited through the evanescent field of the core-guided fundamental mode, which indicates that the structure proposed here can be used as a sensing probe, along with other intrinsic properties of fiber optic sensors, as lightness, multiplexing capacity and easiness of integration in an optical network. As a demonstration, fiber optic BSW excitation is shown to be suitable for measuring RI variations. The designed structure is easy to manufacture and could be adapted to a wide range of applications in the fields of telecommunications, environment, health, and material characterization.


Sign in / Sign up

Export Citation Format

Share Document