scholarly journals Impact of Endometallofullerene on P84 Copolyimide Transport and Thermomechanical Properties

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1108 ◽  
Author(s):  
Galina Polotskaya ◽  
Maia Putintseva ◽  
Alexandra Pulyalina ◽  
Iosif Gofman ◽  
Alexander Toikka

Novel polymer composite materials, including unique nanoparticles, contribute to the progress of modern technologies. In this work, the endohedral fullerene C60 with incapsulated iron atom (endometallofullerene Fe@C60) is used for modification of P84 copolyimide. The impact of 0.1, 0.5, and 1 wt % endometallofullerene on the structure and physicochemical properties of polymer films is studied through scanning electron microscopy, thermogravimetric analysis, and thermomechanical tests. Transport properties are estimated through sorption and pervaporation techniques toward methanol and methyl acetate mixture. The inclusion of endometallofullerene into the copolyimide matrix improves membrane permeability and selectivity in the separation of methanol—methyl acetate mixtures. The maximal effect is achieved with a composite containing 0.5 wt % Fe@C60. The developed composites are effective for energy and resource saving purification of methyl acetate by pervaporation.

Author(s):  
J. P. Benedict ◽  
R. M. Anderson ◽  
S. J. Klepeis

Ion mills equipped with flood guns can perform two important functions in material analysis; they can either remove material or deposit material. The ion mill holder shown in Fig. 1 is used to remove material from the polished surface of a sample for further optical inspection or SEM ( Scanning Electron Microscopy ) analysis. The sample is attached to a pohshing stud type SEM mount and placed in the ion mill holder with the polished surface of the sample pointing straight up, as shown in Fig 2. As the holder is rotating in the ion mill, Argon ions from the flood gun are directed down at the top of the sample. The impact of Argon ions against the surface of the sample causes some of the surface material to leave the sample at a material dependent, nonuniform rate. As a result, the polished surface will begin to develop topography during milling as fast sputtering materials leave behind depressions in the polished surface.


Author(s):  
N. Maidanovych ◽  

The purpose of this work is to review and analyze the main results of modern research on the impact of climate change on the agro-sphere of Ukraine. Results. Analysis of research has shown that the effects of climate change on the agro-sphere are already being felt today and will continue in the future. The observed climate changes in recent decades have already significantly affected the shift in the northern direction of all agro-climatic zones of Europe, including Ukraine. From the point of view of productivity of the agro-sphere of Ukraine, climate change will have both positive and negative consequences. The positives include: improving the conditions of formation and reducing the harvesting time of crop yields; the possibility of effective introduction of late varieties (hybrids), which require more thermal resources; improving the conditions for overwintering crops; increase the efficiency of fertilizer application. Model estimates of the impact of climate change on wheat yields in Ukraine mainly indicate the positive effects of global warming on yields in the medium term, but with an increase in the average annual temperature by 2 ° C above normal, grain yields are expected to decrease. The negative consequences of the impact of climate change on the agrosphere include: increased drought during the growing season; acceleration of humus decomposition in soils; deterioration of soil moisture in the southern regions; deterioration of grain quality and failure to ensure full vernalization of grain; increase in the number of pests, the spread of pathogens of plants and weeds due to favorable conditions for their overwintering; increase in wind and water erosion of the soil caused by an increase in droughts and extreme rainfall; increasing risks of freezing of winter crops due to lack of stable snow cover. Conclusions. Resource-saving agricultural technologies are of particular importance in the context of climate change. They include technologies such as no-till, strip-till, ridge-till, which make it possible to partially store and accumulate mulch on the soil surface, reduce the speed of the surface layer of air and contribute to better preservation of moisture accumulated during the autumn-winter period. And in determining the most effective ways and mechanisms to reduce weather risks for Ukrainian farmers, it is necessary to take into account the world practice of climate-smart technologies.


2017 ◽  
Vol 52 (18) ◽  
pp. 2431-2442 ◽  
Author(s):  
Harun Sepet ◽  
Necmettin Tarakcioglu ◽  
RDK Misra

The main purpose of this work is to study how the morphology of nanofillers and dispersion and distribution level of inorganic nanofiller influence the impact behavior and fracture probability of inorganic filler filled industrial high-density polyethylene nanocomposites. For this study, nanoclay and nano-CaCO3 fillers–high-density polyethylene mixings (0, 1, 3, 5 wt.% high-density polyethylene) was prepared by melt-mixing method using a compounder system. The impact behavior was examined by charpy impact test, scanning electron microscopy, and probability theory and statistics. The level of the dispersion was characterized with scanning electron microscopy energy dispersive X-ray spectroscopy analysis. The results showed rather good dispersion of both of inorganic nanofiller, with a mixture of exfoliated and confined morphology. The results indicated that the impact strength of the industrial nanocomposite decreased with the increase of inorganic particulate content. The impact reliability of the industrial nanocomposites depends on the type of nanofillers and their dispersion and distribution in the matrix.


2016 ◽  
Vol 51 (11) ◽  
pp. 1573-1581 ◽  
Author(s):  
Somayeh Safi ◽  
Ali Zadhoush ◽  
Mahmood Masoomi

The performance of a composite material system depends critically on the interfacial characteristics of the reinforcement and the matrix material. In this study, the interfacial adhesion was tailored by the creation of textures on the glass fiber surface using inorganic-organic silane blends. A single-fiber microdroplet test was conducted to assess the interfacial properties between the textured glass surface and an epoxy matrix. The load–displacement curves from microdroplet tests were analyzed. The stress-based and energy-based micromechanic models of interfacial debonding and corresponding adhesional parameters (apparent and ultimate interfacial shear strength, friction stress, critical energy release rate, work of adhesion, and adhesional pressure) were applied for theoretical calculations. The results showed a clear trend for the impact of different silane blends on the interfacial properties. The specimens containing 75:25 and 50:50 of inorganic–organic silane blends show the most effective improvement in the interfacial adhesion properties between glass fiber and epoxy resin. Scanning electron microscopy was used to visualize the failure surface of the specimen after the microdroplet test. The scanning electron microscopic images indicated that the failure in the blend sized treated glass fiber–epoxy matrix specimen runs predominantly along the interphase and combines both cohesive failure in resin (the presence of some resin fragments) and adhesive failure (some bare fiber surfaces can be seen).


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 868 ◽  
Author(s):  
Yu Huang ◽  
Guo-Guang Cheng ◽  
Shi-Jian Li ◽  
Wei-Xing Dai ◽  
You Xie

Simultaneously improving the toughness and strength of B-microalloyed steel by adding microalloying elements (Nb, V, Ti) has been an extensively usedmethod for researchers. However, coarse Ti(C, N) particle will precipitate during solidification with inappropriate Ti content addition, resulting in poor impact toughness. The effect of the size, number density, and location of Ti(C, N) particle on the impact toughness of B-microalloyed steel with various Ti/N ratios was investigated. Coarse Ti(C, N) particles were investigated to act as the cleavage fracture initiation sites, by using scanning electron microscopy (SEM) analysis. When more coarse Ti(C, N) inclusions were located in ferrite instead of pearlite, the impact toughness of steel with ferrite–pearlite microstructure was lower. Meanwhile, when the size or the number density of Ti(C, N) inclusions was larger, the impact toughness was adversely affected. Normalizing treatment helps to improve the impact property of B-microalloyed steel, owing to the location of Ti(C, N) particles being partly changed from ferrite to pearlite. The formation mechanism of coarse Ti(C, N) particles was calculated by the thermodynamic software Factsage 7.1 and Thermo-Calc. The Ti(C, N) particles formed during the solidification of molten steel, and the N-rich Ti(C, N) phase precipitated first and, then, followed by the C-rich Ti(C, N) phase. Decreasing the Ti and N content is an effective way to inhibit the formation of coarse Ti(C, N) inclusions.


2017 ◽  
Vol 15 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Francesco Paolo La Mantia ◽  
Manuela Ceraulo ◽  
Maria Chiara Mistretta ◽  
Marco Morreale

Purpose Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Methods Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. Results and conclusions It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.


2005 ◽  
Vol 50 (166) ◽  
pp. 193-217
Author(s):  
Krstan Malesevic

The (post)modern economy finds itself undoubtedly in the center of a large scale, radical contradictory, and uncertain current transformation of the world. Together with the (post)modern technologies it composes the dominant core of the globalizing processes, often referred to as globalization. The key features and especially the accumulated consequences of these processes pose a challenge for scientific and theoretical thought in the form of essential questions and dilemmas which are in the last instance tied to the impact of globalization on the quality and meaning of human life. This problem relates as much to individuals as it does to different social groups and human communities, that is to the entire humanity as such. This paper attempts to problematise these contradictory relationships between global corporative, economy as an instrumental value and the human liberty as a substantive i.e. the highest, value in itself (summum bonum), which gives meaning and dignity to human life. Therefore if economy in one form or another covers most of human practical activity then it is certain that it can have decisive impact on the most fundamental value of human life, that is the value of freedom (individual, general, internal and external). Of course the impact of economy can act either way - as an encouragement or, as it often happens, as a deterrent to expansion of the human freedom. This paper aims to briefly indicate some causes, characteristics and consequences of global economic processes which, in a way paradoxically, contribute more to narrowing than to opening spaces of human liberty, or simply generate proliferation of "hedonism of unfreedom". Is this another case of "surplus of knowledge" and "deficit of wisdom" that so strongly characterize our age, or something else?.


2012 ◽  
Vol 85 (3) ◽  
pp. 521-532 ◽  
Author(s):  
Jeevan Prasad Reddy ◽  
Manjusri Misra ◽  
Amar Mohanty

In this research, switchgrass (SG) fiber-reinforced poly(trimethylene terephthalate) (PTT) biocomposites were prepared by extrusion followed by injection molding machine. The methylene-diphenyl-diisocyanate-polybutadiene (MDIPB) prepolymer was used to enhance the impact strength of the biocomposites. In addition, the polymeric methylene-diphenyl-diisocyanate (PMDI) compatibilizer was used to enhance the mechanical properties of the composites. The effect of compatibilizer on mechanical, crystallization melting, thermomechanical, melt flow index (MFI), morphological, and thermal stability properties of the composites was studied. Thermomechanical properties of the biocomposites were studied by dynamic mechanical analysis (DMA). Scanning electron microscopy (SEM) was used to observe the interfacial adhesion between the fiber and matrix. The results showed that MDIPB and PMDI have a significant effect on the mechanical properties of the composites. The impact strength of MDIPB- and PMDI-compatibilized composites was increased by 87 % when compared to the uncompatibilized composite.


2011 ◽  
Vol 197-198 ◽  
pp. 1100-1103
Author(s):  
Jian Li

A polyurethane/clay (PU/clay) composite was synthesized. The microstructure of the composite was examined by scanning electron microscopy. The impact properties of the composite were characterized by impact testing. The study on the structure of the composite showed that clays could be dispersed in the polymer matrix well apart from a few of clusters. The results from mechanical analysis indicated that the impact properties of the composite were increased greatly in comparison with pure polyurethane. The investigation on the mechanical properties showed that the impact strength could be obviously increased by adding 20 wt% (by weight) clay to the matrix.


Sign in / Sign up

Export Citation Format

Share Document