scholarly journals Hyaluronic Acid-Based Nanomaterials for Cancer Therapy

Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1133 ◽  
Author(s):  
Jin Kim ◽  
Myeong Moon ◽  
Dong Kim ◽  
Suk Heo ◽  
Yong Jeong

Hyaluronic acid (HA) is a nonsulfated glycosaminoglycan and a major component of the extracellular matrix. HA is overexpressed by numerous tumor cells, especially tumor-initiating cells. HA-based nanomaterials play in importance role in drug delivery systems. HA is used in various types of nanomaterials including micelle, polymersome, hydrogel, and inorganic nanoparticle formulations. Many experiments show that HA-based nanomaterials can serve as a platform for targeted chemotherapy, gene therapy, immunotherapy, and combination therapy with good potential for future biomedical applications in cancer treatment.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Carmela Saturnino ◽  
Maria Stefania Sinicropi ◽  
Ortensia Ilaria Parisi ◽  
Domenico Iacopetta ◽  
Ada Popolo ◽  
...  

Hyaluronic acid (HA), a macropolysaccharidic component of the extracellular matrix, is common to most species and it is found in many sites of the human body, including skin and soft tissue. Not only does HA play a variety of roles in physiologic and in pathologic events, but it also has been extensively employed in cosmetic and skin-care products as drug delivery agent or for several biomedical applications. The most important limitations of HA are due to its short half-life and quick degradationin vivoand its consequently poor bioavailability. In the aim to overcome these difficulties, HA is generally subjected to several chemical changes. In this paper we obtained an acetylated form of HA with increased bioavailability with respect to the HA free form. Furthermore, an improved radical scavenging and anti-inflammatory activity has been evidenced, respectively, on ABTS radical cation and murine monocyte/macrophage cell lines (J774.A1).


2020 ◽  
Vol 21 ◽  
Author(s):  
Dickson Pius Wande ◽  
Qin Cui ◽  
Shijie Chen ◽  
Cheng Xu ◽  
Hui Xiong ◽  
...  

: As a unique and pleiotropic polymer, d-alpha-tocopheryl polyethylene glycol succinate (Tocophersolan) is a polymeric synthetic version of vitamin E. Tocophersolan has attracted enormous attention as a versatile excipient in different biomedical applications including drug delivery systems and nutraceuticals. The multiple inherent properties of Tocophersolan make it play flexible roles in drug delivery system design, including excipients with outstanding biocompatibility, solubilizer with the ability of promoting drug dissolution, drug permeation enhancer, P-glycoprotein inhibitor and anticancer compound. For these reasons, Tocophersolan has been widely used for improving the bioavailability of numerous pharmaceutical active ingredients. Tocophersolan has been approved by stringent regulatory authorities (such as US FDA, EMA, and PMDA) as a safe pharmaceutical excipient. In this review, we systematically curated current advances in nano-based delivery systems consisting of Tocophersolan with possibilities for futuristic applications in drug delivery, gene therapy, and nanotheranostic.


2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2018 ◽  
Vol 6 (4) ◽  
pp. 877-884 ◽  
Author(s):  
Po Li ◽  
Yue Yan ◽  
Binlong Chen ◽  
Pan Zhang ◽  
Siling Wang ◽  
...  

In recent years, multifunctional nanoparticles have attracted much research interest in various biomedical applications such as biosensors, diagnosis, and drug delivery systems.


Author(s):  
Ameneh Mohammadi ◽  
Pooria Gill ◽  
Pedram Ebrahimnejad ◽  
Said Abediankenari ◽  
Zahra Kashi

: The application of nanotechnology in medicine and pharmaceutical purpose suggested a novel procedure in the nanotechnology terminology as nanomedicine. There is a wide range of applications for nanotechnology in medicine, such as the use of nanocarriers in drug delivery systems. Recently a remarkable attention to DNA has been made through its amazing functionality and its nature as a nanomaterial in biological systems. Since DNA is a biocompatible, the use of DNA as a nanomaterial in medicine has shown a great perspective of rational engineering of DNA nanostructures. According to new approaches in treatment of diseases in gene levels, gene therapy, using DNA as a nanomedicine possesses an important role in the medical sciences as the researchers published enormous papers and patents in the fields, for instance, the applications of DNA and DNA-based nanostructures as drug or gene nanocarriers, DNA-based diagnostics and DNA nanovasccines. Here, some examples of DNA-based nanomedicine in the patent frame were reviewed.


Molecules ◽  
2019 ◽  
Vol 24 (14) ◽  
pp. 2570 ◽  
Author(s):  
Inés Serrano-Sevilla ◽  
Álvaro Artiga ◽  
Scott G. Mitchell ◽  
Laura De Matteis ◽  
Jesús M. de la Fuente

Natural polysaccharides are frequently used in the design of drug delivery systems due to their biocompatibility, biodegradability, and low toxicity. Moreover, they are diverse in structure, size, and charge, and their chemical functional groups can be easily modified to match the needs of the final application and mode of administration. This review focuses on polysaccharidic nanocarriers based on chitosan and hyaluronic acid for small interfering RNA (siRNA) delivery, which are highly positively and negatively charged, respectively. The key properties, strengths, and drawbacks of each polysaccharide are discussed. In addition, their use as efficient nanodelivery systems for gene silencing applications is put into context using the most recent examples from the literature. The latest advances in this field illustrate effectively how chitosan and hyaluronic acid can be modified or associated with other molecules in order to overcome their limitations to produce optimized siRNA delivery systems with promising in vitro and in vivo results.


2019 ◽  
Vol 91 (4) ◽  
pp. 687-706 ◽  
Author(s):  
María Vallet-Regí

Abstract Since the second half of the 20th century, bioceramics are used for bone repair and regeneration. Inspired by bones and teeth, and aimed at mimicking their structure and composition, several artificial bioceramics were developed for biomedical applications. And nowadays, in the 21st century, with the increasing prominence of nanoscience and nanotechnology, certain bioceramics are being used to build smart drug delivery systems, among other applications. This minireview will mainly describe both tendencies through the research work carried out by the research team of María Vallet-Regí.


Sign in / Sign up

Export Citation Format

Share Document