scholarly journals Cationic Moieties in Polystyrene Gels Swollen with d-Limonene Improved Transdermal Delivery System

Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1200 ◽  
Author(s):  
Preeyarad Charoensumran ◽  
Hiroharu Ajiro

d-limonene, a terpene and natural compound, has been found to be an excellent penetration enhancer for transdermal drug delivery (TDD). It hence has been incorporated within various transdermal formulations. Herein, we report the application of polystyrene gel swollen with d-limonene and its derivatives for TDD. Poly(styrene-co-divinylbenzene) (PS gel), poly(styrene-co-divinylbenzene-co-4-vinylpyridine) (PS-4VP) gel and poly(styrene-co-divinylbenzene-co-(vinylbenzyl) trimethylammonium chloride) (PS-VBAC gel) were employed as chemical gels to improve the stability of the TDD substrates. The drug permeation properties from the PS gels swollen in limonene were examined, regarding the effect of its network density as well as their rheological properties. The lowest density of the network showed the highest steady flux of the permeation at 43.7 ± 0.3 μg/cm2. FT-IR spectra were confirmed for PS-4VP and PS-VBAC, bearing cationic moieties and they could control the release of ibuprofen by the electrostatic interaction at the interface of organogel and skin. The steady state flux of skin permeation got low values from 55.2 ± 0.8 to 11.6 ± 2.0 μg/cm2, when the cationic moieties were increased. Moreover, the chemical network of PS gel swollen in limonene showed high mechanical stability illustrated by elastic modulus (G’) of about 98 kPa for 10% cross-linked PS gel. The developed PS gels swollen in limonene show highly promising results, suggesting their possible application in TDD.

2019 ◽  
Vol 819 ◽  
pp. 92-97
Author(s):  
Sitthiphong Soradech ◽  
Khaunnapa Panapong ◽  
Surada Soonthornsatitwong ◽  
Somkamol Manchun ◽  
Sirinan Tubtimted ◽  
...  

The purpose of this study was to develop micromeulsion consisting of Carthamus tinctorius floret extract (CT) as an ingredient to inhibit 5α-reductase activity. CT was extracted using a simple maceration technique with ethanol and inhibition of 5α-reductase activities was determined. Solutions of 2% CT extract were loaded into four microemulsion (ME) formulas (F1, F2, F3 and F4) and investigated for their physical properties, skin permeation and stability. Results showed that crude CT extract had no toxic effects on DU145 cells at concentrations of 0.0001-1.0 mg/mL. For reduction of 5α-reductase activities, concentration of CT extract at 0.05 mg/mL exhibited highest 5-reductase type-1 inhibition activity on the DU-145 cell line at 89.96% of the control, higher than standard finasteride (31.39%) and dutasteride (38.58%). The results indicated that a thermodynamically stable microemulsion improved the stability and permeation rate of CT extract. Among the ME formula, F3 was most appropriate for ME formulation with highest permeation rate and good stability during 30 days of storage. Therefore, using nanotechnology for stable transdermal delivery systems of bioactive compounds from Thai medicinal plants is one approach to improve skin and hair follicle permeation.


2007 ◽  
Vol 57 (3) ◽  
pp. 315-332 ◽  
Author(s):  
Sanjula Baboota ◽  
Faiyaz Shakeel ◽  
Alka Ahuja ◽  
Javed Ali ◽  
Sheikh Shafiq

Design, development and evaluation of novel nanoemulsion formulations for transdermal potential of celecoxibThe aim of the present study was to investigate the potential of nanoemulsion formulations for transdermal delivery of celecoxib (CXB). Thein vitroskin permeation profile of optimized formulations was compared with CXB gel and nanoemulsion gel. Significant increase in the steady state flux (Jss), permeability coefficient (Kp) and enhancement ratio (Er) was observed in nanoemulsion formulations T1 and T2 (p< 0.05). The highest value of these permeability parameters was obtained in formulation T2, which consisted of 2% (m/m) of CXB, 10% (m/m) of oil phase (Sefsol 218 and Triacetin), 50% (m/m) of surfactant mixture (Tween-80 and Transcutol-P) and 40% (m/m) water. The anti-inflammatory effects of formulation T2 showed a significant increase (p< 0.05) in inhibition after 24 h compared to CXB gel and nanoemulsion gel on carrageenan-induced paw edema in rats. These results suggested that nanoemulsions are potential vehicles for improved transdermal delivery of CXB.


2021 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Amani Zoabi ◽  
Elka Touitou ◽  
Katherine Margulis

The stratum corneum, the most superficial layer of the skin, protects the body against environmental hazards and presents a highly selective barrier for the passage of drugs and cosmetic products deeper into the skin and across the skin. Nanomaterials can effectively increase the permeation of active molecules across the stratum corneum and enable their penetration into deeper skin layers, often by interacting with the skin and creating the distinct sites with elevated local concentration, acting as reservoirs. The flux of the molecules from these reservoirs can be either limited to the underlying skin layers (for topical drug and cosmeceutical delivery) or extended across all the sublayers of the epidermis to the blood vessels of the dermis (for transdermal delivery). The type of the nanocarrier and the physicochemical nature of the active substance are among the factors that determine the final skin permeation pattern and the stability of the penetrant in the cutaneous environment. The most widely employed types of nanomaterials for dermal and transdermal applications include solid lipid nanoparticles, nanovesicular carriers, microemulsions, nanoemulsions, and polymeric nanoparticles. The recent advances in the area of nanomaterial-assisted dermal and transdermal delivery are highlighted in this review.


2021 ◽  
Author(s):  
Hourieh Sadat Oboudatian ◽  
Javad Safaei-Ghomi

Abstract Fibrous nano-silica sphere (KCC-1) has appeared as a good and efficient catalyst for ultrasonic irradiation conditions in chemical reactions. This catalyst has the unique properties such as a fibrous surface morphology, high surface area and high mechanical stability. The results indicated that the KCC-1 nanocatalyst could be used as high-performance catalysts under high temperature and pressure condition in organic reaction under ultrasonic irradiation. Morphology, structure, and composition of the fibrous nano-silica sphere were described by N2 adsorption–desorption analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray powder diffraction (XRD), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FT-IR). In this work, we used KCC-1@NH2 nanosilica as a basic catalyst for the preparation of chromenes under ultrasonic irradiation conditions for the first time. The recyclability, nontoxicity and high stability of the catalyst, combined with low reaction times and excellent yields, make the present protocol very useful for the synthesis of the title products under ultrasonic conditions. The produced products were confirmed via 1H NMR, 13C NMR, FT-IR analysis.


2015 ◽  
Vol 10 (2) ◽  
pp. 2663-2681
Author(s):  
Rizk El- Sayed ◽  
Mustafa Kamal ◽  
Abu-Bakr El-Bediwi ◽  
Qutaiba Rasheed Solaiman

The structure of a series of AlSb alloys prepared by melt spinning have been studied in the as melt–spun ribbons  as a function of antimony content .The stability  of these structures has  been  related to that of the transport and mechanical properties of the alloy ribbons. Microstructural analysis was performed and it was found that only Al and AlSb phases formed for different composition.  The electrical, thermal and the stability of the mechanical properties are related indirectly through the influence of the antimony content. The results are interpreted in terms of the phase change occurring to alloy system. Electrical resistivity, thermal conductivity, elastic moduli and the values of microhardness are found to be more sensitive than the internal friction to the phase changes. 


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2018 ◽  
Author(s):  
Lincy Tom ◽  
Victoria A. Smolenski ◽  
Jerry P. Jasinski ◽  
M.R. Prathapachandra Kurup

The reaction of p-hydroxybenzaldehyde with an equimolar amount of isonicotinic hydrazide afforded two polymorphic and hydrate forms of p-hydroxybenzaldehyde isonicotinichydrazone (HBIH) by varying the experimental reaction conditions. The compounds are fully characterized by means of single crystal and powder diffraction methods, vibrational spectroscopy (FT-IR and Raman), thermal and elemental analysis. The compound crystallizes in three different forms in two different space groups, P21/c (form PA and PB) and Pbca (PC). The Hirshfeld surface analysis shows the differences in the relative contributions of intermolecular interactions to the total Hirshfeld surface area for the HBIH molecules. The calculated pairwise interaction energies (104-116 kJ/mol) can be related to the stability of the crystals. Energy framework analysis identifies the interaction hierarchy and their topology. The geometry and conformation of the three forms are essentially similar which differ only by packing arrangement.


2020 ◽  
Vol 12 ◽  
Author(s):  
Shivani Verma ◽  
Sukhjinder Kaur ◽  
Lalit Kumar

Background: HQ is used for hyper-pigmentation treatment using conventional creams and gels. These formulations show various disadvantages like poor skin permeation, allergic reactions, and repeated use decreasing patient compliance. Objectives: The present work involved formulation, statistical optimization, and characterization of nanostructured lipid carriers (NLCs) for efficient topical delivery of hydroquinone (HQ) for hyperpigmentation treatment. Methods: The NLCs were optimized exploring Box–Behnken design (BBD) using three independent variables and two dependent variables. Formulation having the minimum size and maximum drug entrapment was considered as optimized formulation. Optimized formulation was evaluated for drug release followed by its freeze-drying. The freeze-dried formulation was subjected to differential scanning calorimetry (DSC) analysis, X-raydiffraction (XRD) analysis, and Fourier transform-infrared spectroscopy (FT-IR) analysis. Furthermore, NLCs based gel was prepared by using Carbopol 934 as a gelling agent. NLCs based gel was evaluated for skin permeation, skin retention, and skin distribution (through confocal microscopic analysis) using pig ear skin. Results: Optimized NLCs showed smaller particle size [(271.9 ± 9) nm], high drug entrapment [(66.4 ± 1.2) %], tolerable polydispersity index (PDI) (0.221 ± 0.012), and zeta potential [(-25.9± 1.2) mV]. The FT-IR analysis revealed excellent compatibility between HQ and other excipients. The Carbopol 934 gel containing NLCs showed high transdermal flux [(163 ± 16.2) μg/cm2/h], permeability coefficient (0.0326 ± 0.0016), and skin permeation enhancement ratio (3.7 ± 0.4) compared to marketed cream of HQ. The results of confocal microscopic (CLSM) analysis revealed the accumulation of optimized NLCs in the lower epidermal layers of skin. Conclusion: NLCs based gel was considered effective in the topical delivery of HQ to treat hyper-pigmentation due high skin permeation, skin retention, and prolonged release of HQ.


2021 ◽  
pp. 296-302
Author(s):  
Ryosuke Hirota ◽  
Makoto Emori ◽  
Yoshinori Terashima ◽  
Kousuke Iba ◽  
Noriyuki Iesato ◽  
...  

We present the case of a 15-year-old girl. Two months after becoming aware of pain, she was diagnosed with a sacral tumor and referred to our department. She was diagnosed with a sacral Ewing’s sarcoma; after chemotherapy, it was determined that the tumor could be resected, so surgical treatment was performed. The sacrum and ilium were partially resected at the lower end of S1, and the lumbar vertebrae and pelvis were fixed with a pedicle screw and two iliac screws on each side of L3, and the sacral resection was reconstructed with a tibial strut allograft. No tumor recurrence or metastasis has been observed 1 year postoperatively. She developed bladder and rectal dysfunction, but she remained independent in activities of daily living and her daily life was not limited. The bone fusion in the reconstructed area confirmed the lack of instrumentation looseness. Surgical treatment for sacral Ewing’s sarcoma was performed to cure the patient. We believe that the tibial allograft contributed to the patient’s ability to walk on her own due to its high mechanical stability. Postoperative bone healing was observed with the same material, suggesting that the tibial allograft is useful for similar procedures.


Sign in / Sign up

Export Citation Format

Share Document