scholarly journals Inkjet Printable and Self-Curable Disperse Dyes/P(St-BA-MAA) Nanosphere Inks for Both Hydrophilic and Hydrophobic Fabrics

Polymers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1402 ◽  
Author(s):  
Yawei Song ◽  
Kuanjun Fang ◽  
Yanfei Ren ◽  
Zhiyuan Tang ◽  
Rongqing Wang ◽  
...  

Low-water-soluble disperse dyes possess a broad color gamut and good durability, but they need chemical or physical modification before being used in inks and can only be applied to several kinds of hydrophobic fabrics. In this work, disperse dyes/P(St-BA-MAA) nanospheres (known as DPN) absorbed by sodium nitrilotriacetate (known as NTA@DPN) were prepared and applied into ink formulations, which exhibited high dye fixation, long-term stability and self-curable ability without addition of any binder. Transmission electron microscopy (TEM) images showed the nanospheres have homogeneous core-shell spherical shape and the average diameter increased by 20.6 nm after coloration. X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), and differential scanning calorimetry (DSC) measurements illustrated the interaction between dyes and nanospheres and indicated that the colored nanospheres contained both dye molecules and crystalline dyes. The Zeta potential and particle size measurements demonstrated that the dispersion stability was improved when sodium nitrilotriacetate (NTA) was absorbed onto DPN. The rheological behavior of the NTA@DPN inks was Newtonian and desired droplet formation was achieved at the viscosity of 4.23 mPa·s. Both hydrophilic cotton and hydrophobic polyester fabrics were cationic modified before used, which had an excellent image quality and desired rubbing fastness after inkjet printing. Scanning electron microscope (SEM) images showed NTA@DPN formed stable deposits on the surface of modified fibers and could self-cure to form continuous film coating on the fiber surface after being baked at 150 °C without addition of any binder.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 767
Author(s):  
Yayoi Kawano ◽  
Shiyang Chen ◽  
Takehisa Hanawa

The solubility of a drug is higher when it is in an amorphous form than when it is in a crystalline form. To enhance the solubility of ibuprofen (IBU), a poorly water-soluble drug, we attempted to adsorb IBU onto spherical porous calcium silicate (Florite® PS300, PS300) in two ways: the evaporation (EV) and sealed heating (SH) methods. The crystallinity of the samples was evaluated using powder X-ray diffraction analysis (PXRD) and differential scanning calorimetry (DSC). The molecular interaction between IBU and PS300 was evaluated with FTIR. In addition, the dissolution behavior of IBU in the samples was assessed by the dissolution test. Based on the results of the PXRD and DSC measurements, both methods allowed adsorption of IBU onto PS300, and IBU was amorphized. Based on the FTIR observations, in the SH or EV mixtures containing 10% and 30% IBU, respectively, it seemed that the IBU molecules intermolecularly interacted with calcium molecules as the main component of PS300. Improvement in the solubility of IBU was observed with both methods; however, the dissolution rate of IBU from samples prepared via SH was higher than that from EV, or of IBU crystals. Collectively, our findings indicate that the petal-like structure of PS300, which has a spherical shape and good flowability, is an effective tool for adsorbing IBU onto PS300 via SH.


Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Thangavel Ponrasu ◽  
Bei-Hsin Chen ◽  
Tzung-Han Chou ◽  
Jia-Jiuan Wu ◽  
Yu-Shen Cheng

The fast-dissolving drug delivery systems (FDDDSs) are developed as nanofibers using food-grade water-soluble hydrophilic biopolymers that can disintegrate fast in the oral cavity and deliver drugs. Jelly fig polysaccharide (JFP) and pullulan were blended to prepare fast-dissolving nanofiber by electrospinning. The continuous and uniform nanofibers were produced from the solution of 1% (w/w) JFP, 12% (w/w) pullulan, and 1 wt% Triton X-305. The SEM images confirmed that the prepared nanofibers exhibited uniform morphology with an average diameter of 144 ± 19 nm. The inclusion of JFP in pullulan was confirmed by TGA and FTIR studies. XRD analysis revealed that the increased crystallinity of JFP/pullulan nanofiber was observed due to the formation of intermolecular hydrogen bonds. The tensile strength and water vapor permeability of the JFP/pullulan nanofiber membrane were also enhanced considerably compared to pullulan nanofiber. The JFP/pullulan nanofibers loaded with hydrophobic model drugs like ampicillin and dexamethasone were rapidly dissolved in water within 60 s and release the encapsulants dispersive into the surrounding. The antibacterial activity, fast disintegration properties of the JFP/pullulan nanofiber were also confirmed by the zone of inhibition and UV spectrum studies. Hence, JFP/pullulan nanofibers could be a promising carrier to encapsulate hydrophobic drugs for fast-dissolving/disintegrating delivery applications.


2005 ◽  
Vol 60 (7-8) ◽  
pp. 567-571 ◽  
Author(s):  
Halina Kleszczyńska ◽  
Dorota Bonarska ◽  
Hanna Pruchnik ◽  
Krzysztof Bielecki ◽  
Andrzej Piasecki ◽  
...  

Potential antioxidative activities of three series of newly synthesized N-oxides were studied. Individual components in each of the series differed in the lipophilicities and number of free radical scavenging groups. Various methods were used to determine their antioxidative efficiencies: Prevention of erythrocyte membrane lipid oxidation induced by UV irradiation and chromogen experiments in which antioxidative efficiencies of compounds were compared to that of the standard antioxidant Trolox (a water-soluble vitamin E analogue). Additionally, some hemolytic (pig erythrocytes) and differential scanning calorimetry (DSC) measurements were performed to determine a mechanism of the interaction between membranes and N-oxides. It was found that N-oxides, especially those of long alkyl chains (> C12H25), readily interacted with both, erythrocyte and liposomal membranes. No marked differences were found in their protection of erythrocytes against oxidation. In most cases inhibition of oxidation changed between 15% and 25%. Still, it was far better than in chromogen experiments where suppression of free radicals reached 20% in the best case. It may be concluded that antioxidative capabilities of N-oxides are moderate. Studies on the interaction mechanism showed that incorporation of particular compounds into model membranes varied. Hemolysing activities of compounds increased with the elongation of the alkyl chain but differed for corresponding compounds of particular series indicating that lipophilicity of compounds is not the only factor determing their interaction with erythrocyte membranes. DSC experiments showed that N-oxides, upon incorporation into 1,2-dipalmitoyl-3-snphosphatidylcholine liposomes, shifted the subtransition (Tp) and the main transition (Tm). The shifts observed depended on the alkyl chain length. The effects differed for each series. It seems that in the case of long alkyl chain compounds the domain formation may take place. Generally, the decrease of Tm was greatest for the same compounds that exhibited the best hemolytic efficacy. The same conclusion concerns the decrease of cooperativity of the main transition and the observed changes suggest an increase in membrane fluidity. Both, erythrocyte and DSC experiments seem to indicate that compounds of particular series incorporate in a somewhat different way into membranes.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Zahed Shami ◽  
Naser Sharifi-Sanjani

AbstractThe novel poly(acrylic acid)/poly(ethylene oxide) (PAA/PEO) blend nanofibers at 100/0, 80/20, 50/50, 20/80 and 0/100 weight ratios were obtained via electrospinning process. Intermolecular interactions and compatibility of blend fibers were studied by Fourier transform infrared (FT-IR) and differential scanning calorimetry (DSC). It was found that the free-hydroxyl groups, the bonded hydrogen hydroxyl groups and the carbonyl groups absorption bands in the electrospun PAA/PEO fibers shifted with the increase in PEO percentage in the blend. DSC measurements showed the melting point, the glass transition temperature, the melting enthalpy and the crystallinity percentage of pure polymer nanofibers were different compared with blend nanofibers. The results suggested that intermolecular interactions occurred in the electrospun PAA/PEO nanofibers. These interactions made PAA/PEO blends miscible at above-mentioned weight ratios. Additionally, the morphology and the average fiber diameter were investigated using scanning electron microscope (SEM) analysis, which indicated beadless fibers with diameter range of 110 to 280 nm. It was observed that the uniform fibers with the smaller average diameter were obtained in PAA/PEO blends containing PAA dominant content. Finally, the SEM results suggested that the formation of pure PAA nanofibers with concentration of 5 Wt. % would not occur. Whereas, in the same concentration, pure PEO and PAA/PEO blend nanofibers with no bead defects were obtained.


2021 ◽  
Vol 11 (11) ◽  
pp. 5090
Author(s):  
Muhammed Enes Tasci ◽  
Berna Dede ◽  
Eray Tabak ◽  
Aybuke Gur ◽  
Rabia Betul Sulutas ◽  
...  

Polymeric microparticles with controlled morphologies and sizes are being studied by researchers in many applications, such as for drug release, healthcare and cosmetics. Herein, spherical and porous polymeric microparticles of different sizes and morphologies by electrospray technique have been developed as a viable alternative. In this work, polylactic acid (PLA) microparticles with a spherical shape and porous morphology were successfully produced via an electrospray technique in a single step. Molecular interactions between the components and the effect of parameters, such as varying solvent compositions, flow rates and voltage on microparticle morphology, were investigated over the particle formation. It was observed that the type of solvents used is the most effective parameter in terms of particle morphology, size and distribution. When the optical microscopy and SEM images of the microparticles were examined, 3 wt.% PLA in dichloromethane (DCM) solution concentration with an applied voltage of 18 kV and a flow rate of 20 µL/min was found to be the optimum parameter combination to achieve the desired spherical and porous micron-size particles. The average diameter of the particles achieved was 3.01 ± 0.58 µm. DCM was found to be a more suitable solvent for obtaining microparticles compared to the other solvents used. Finally, particles that are obtained by electrospraying of PLA–DCM solution are porous and monodisperse. They might have excellent potential as a carrier of drugs to the targeted sides and can be used in different biomedical applications.


2021 ◽  
Vol 11 (9) ◽  
pp. 4253
Author(s):  
Emmanouela Mystiridou ◽  
Anastasios C. Patsidis ◽  
Nikolaos Bouropoulos

Bone substitute materials are placed in bone defects and play an important role in bone regeneration and fracture healing. The main objective of the present research is fabrication through the technique of 3D printing and the characterization of innovative composite bone scaffolds composed of polylactic acid (PLA), poly (ε-caprolactone) (PCL) while hydroxyapatite (HAp), and/or barium titanate (BaTiO3—BT) used as fillers. Composite filaments were prepared using a single screw melt extruder, and finally, 3D composite scaffolds were fabricated using the fused deposition modeling (FDM) technique. Scanning electron microscopy (SEM) images showed a satisfactory distribution of the fillers into the filaments and the printed objects. Furthermore, differential scanning calorimetry (DSC) measurements revealed that PLA/PCL filaments exhibit lower glass transition and melting point temperatures than the pure PLA filaments. Finally, piezoelectric and dielectric measurements of the 3D objects showed that composite PLA/PCL scaffolds containing HAp and BT exhibited piezoelectric coefficient (d33) values close to the human bone and high dielectric permittivity values.


Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Meka Lingam ◽  
Vobalaboina Venkateswarlu

The low aqueous solubility of celecoxib (CB) and thus its low bioavailability is a problem.    Thus, it is suggested to improve the solubility using cosolvency and solid dispersions techniques. Pure CB has solubility of 6.26±0.23µg/ml in water but increased solubility of CB was observed with increasing concentration of cosolvents like PEG 400, ethanol and propylene glycol. Highest solubility (791.06±15.57mg/ml) was observed with cosolvency technique containing the mixture of composition 10:80:10%v/v of water: PEG 400: ethanol. SDs with different polymers like PVP, PEG were prepared and subjected to physicochemical characterization using Fourier-transform infrared (FTIR) spectroscopy, X-ray diffractometry (XRD), differential scanning calorimetry (DSC), solubility and dissolution studies. These studies reveals that CB exists mainly in amorphous form in prepared solid dispersions of PVP, PEG4000 and PEG6000 further it can also be confirmed by solubility and dissolution rate studies. Solid dispersions of PV5 and PV9 have shown highest saturation solubility and dissolution rate


Author(s):  
Nisha Patel ◽  
Hitesh A Patel

In this study, we sought to improve the dissolution characteristics of a poorly water-soluble BCS class IV drug canaglifozin, by preparing nanosuspension using media milling method. A Plackett–Burman screening design was employed to screen the significant formulation and process variables. A total of 12 experiment were generated by design expert trial version 12 for screening 5 independent variables namely the amount of stabilizer in mg (X1), stirring time in hr (X2), amt of Zirconium oxide beads in gm (X3), amount of drug in mg (X4) and stirring speed in rpm (X5) while mean particle size in nm (Y1) and drug release in 10 min. were selected as the response variables. All the regression models yielded a good fit with high determination coefficient and F value. The Pareto chart depicted that all the independent variables except the amount of canaglifozin had a significant effect (p<0.001) on the response variables. The mathematical model for mean particle size generated from the regression analysis was given by mean particle size = +636.48889 -1.28267 amt of stabilizer(X1) -4.20417 stirring time (X2) -7.58333 amt of ZrO2 beads(X3) -0.105556 amt of drug(X4) -0.245167 stirring speed(X5) (R2=0.9484, F ratio=22.07, p<0.001). Prepared canaglifozin nanosuspension exemplified a significant improvement (p<0.05) in the release as compared to pure canaglifozin and marketed tablet with the optimum formulation releasing almost 80% drug within first 10min. Optimized nanosuspension showed spherical shape with surface oriented stabilizer molecules and a mean particle diameter of 120.5 nm. There was no change in crystalline nature after formulation and it was found to be chemically stable with high drug content.


2020 ◽  
Vol 17 (3) ◽  
pp. 246-256
Author(s):  
Kriti Soni ◽  
Ali Mujtaba ◽  
Md. Habban Akhter ◽  
Kanchan Kohli

Aim: The intention of this investigation was to develop Pemetrexed Diacid (PTX)-loaded gelatine-cloisite 30B (MMT) nanocomposite for the potential oral delivery of PTX and the in vitro, and ex vivo assessment. Background: Gelatin/Cloisite 30 B (MMT) nanocomposites were prepared by blending gelatin with MMT in aqueous solution. Methods: PTX was incorporated into the nanocomposite preparation. The nanocomposites were investigated by Fourier Transmission Infra Red Spectroscopy (FT-IR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscope (SEM) X-Ray Diffraction (XRD) and Confocal Laser Microscopy (CLSM). FT-IR of nanocomposite showed the disappearance of all major peaks which corroborated the formation of nanocomposites. The nanocomposites were found to have a particle size of 121.9 ± 1.85 nm and zeta potential -12.1 ± 0.63 mV. DSC thermogram of drug loaded nanocomposites indicated peak at 117.165 oC and 205.816 oC, which clearly revealed that the drug has been incorporated into the nanocomposite because of cross-linking of cloisite 30 B and gelatin in the presence of glutaraldehyde. Results: SEM images of gelatin show a network like structure which disappears in the nanocomposite. The kinetics of the drug release was studied in order to ascertain the type of release mechanism. The drug release from nanocomposites was in a controlled manner, followed by first-order kinetics and the drug release mechanism was found to be of Fickian type. Conclusion: Ex vivo gut permeation studies revealed 4 times enhancement in the permeation of drug present in the nanocomposite as compared to plain drug solution and were further affirmed by CLSM. Thus, gelatin/(MMT) nanocomposite could be promising for the oral delivery of PTX in cancer therapy and future prospects for the industrial pharmacy.


Sign in / Sign up

Export Citation Format

Share Document