scholarly journals On the Use of Gallic Acid as a Potential Natural Antioxidant and Ultraviolet Light Stabilizer in Cast-Extruded Bio-Based High-Density Polyethylene Films

Polymers ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 31 ◽  
Author(s):  
Luis Quiles-Carrillo ◽  
Sergi Montava-Jordà ◽  
Teodomiro Boronat ◽  
Chris Sammon ◽  
Rafael Balart ◽  
...  

This study originally explores the use of gallic acid (GA) as a natural additive in bio-based high-density polyethylene (bio-HDPE) formulations. Thus, bio-HDPE was first melt-compounded with two different loadings of GA, namely 0.3 and 0.8 parts per hundred resin (phr) of biopolymer, by twin-screw extrusion and thereafter shaped into films using a cast-roll machine. The resultant bio-HDPE films containing GA were characterized in terms of their mechanical, morphological, and thermal performance as well as ultraviolet (UV) light stability to evaluate their potential application in food packaging. The incorporation of 0.3 and 0.8 phr of GA reduced the mechanical ductility and crystallinity of bio-HDPE, but it positively contributed to delaying the onset oxidation temperature (OOT) by 36.5 °C and nearly 44 °C, respectively. Moreover, the oxidation induction time (OIT) of bio-HDPE, measured at 210 °C, was delayed for up to approximately 56 and 240 min, respectively. Furthermore, the UV light stability of the bio-HDPE films was remarkably improved, remaining stable for an exposure time of 10 h even at the lowest GA content. The addition of the natural antioxidant slightly induced a yellow color in the bio-HDPE films and it also reduced their transparency, although a high contact transparency level was maintained. This property can be desirable in some packaging materials for light protection, especially UV radiation, which causes lipid oxidation in food products. Therefore, GA can successfully improve the thermal resistance and UV light stability of green polyolefins and will potentially promote the use of natural additives for sustainable food packaging applications.

Antioxidants ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Sandra Rojas-Lema ◽  
Sergio Torres-Giner ◽  
Luis Quiles-Carrillo ◽  
Jaume Gomez-Caturla ◽  
Daniel Garcia-Garcia ◽  
...  

This study originally explores the use of naringin (NAR), gallic acid (GA), caffeic acid (CA), and quercetin (QUER) as natural antioxidants for bio-based high-density polyethylene (bio-HDPE). These phenolic compounds are present in various citrus fruits and grapes and can remain in their leaves, peels, pulp, and seeds as by-products or wastes after juice processing. Each natural additive was first melt-mixed at 0.8 parts per hundred resin (phr) of bio-HDPE by extrusion and the resultant pellets were shaped into films by thermo-compression. Although all the phenolic compounds colored the bio-HDPE films, their contact transparency was still preserved. The chemical analyses confirmed the successful inclusion of the phenolic compounds in bio-HDPE, though their interaction with the green polyolefin matrix was low. The mechanical performance of the bio-HDPE films was nearly unaffected by the natural compounds, presenting in all cases a ductile behavior. Interestingly, the phenolic compounds successfully increased the thermo-oxidative stability of bio-HDPE, yielding GA and QUER the highest performance. In particular, using these phenolic compounds, the onset oxidation temperature (OOT) value was improved by 43 and 41.5 °C, respectively. Similarly, the oxidation induction time (OIT) value, determined in isothermal conditions at 210 °C, increased from 4.5 min to approximately 109 and 138 min. Furthermore, the onset degradation temperature in air of bio-HDPE, measured for the 5% of mass loss (T5%), was improved by up to 21 °C after the addition of NAR. Moreover, the GA- and CA-containing bio-HDPE films showed a high antioxidant activity in alcoholic solution due to their favored release capacity, which opens up novel opportunities in active food packaging. The improved antioxidant performance of these phenolic compounds was ascribed to the multiple presence of hydroxyl groups and aromatic heterocyclic rings that provide these molecules with the features to permit the delocalization and the scavenging of free radicals. Therefore, the here-tested phenolic compounds, in particular QUER, can represent a sustainable and cost-effective alternative of synthetic antioxidants in polymer and biopolymer formulations, for which safety and environmental issues have been raised over time.


2020 ◽  
Vol 11 (1-2) ◽  
pp. 3-14
Author(s):  
Cassiano MN Romagnolli ◽  
Gabriela P Leite ◽  
Tiago AR Rodrigues ◽  
Carolina L Morelli

Plastic packagings are widely used for several food products. Considering the relatively short service lifetime of this application, it is important to perceive in the search of eco-friendly alternatives to this market, such as polymers from renewable sources, as thermoplastic starch and “green” polyethylene. The incorporation of an antibacterial agent to the packaging can extend food shelf life. Camellia sinensis is a plant with known antibacterial properties used in the preparation of “green tea.” In the present work, green tea was incorporated to a blend of cassava thermoplastic starch and high-density polyethylene (HDPE) by melt extrusion, aiming application as active packaging. Films were obtained by thermopressing and characterized through infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and tensile tests. Their antibacterial properties were evaluated against Staphylococcus aureus and Escherichia coli. The results indicated that the material developed has potential for food packaging applications. Moreover, the methodology applied for green tea incorporation in the Starch/HDPE films can be extended for many extracts from natural components, contributing to the advancement of research in the development of active packaging for food products. To the best of our knowledge, no previous work studied the properties of starch/HDPE blend with green tea.


2015 ◽  
Vol 754-755 ◽  
pp. 201-204
Author(s):  
Ragunathan Santiagoo ◽  
Sam Sung Ting ◽  
Azlinda Abdul Ghani ◽  
Hanafi Ismail ◽  
Awiezan Mislan

The compatibilizer effect of ENR-50 on the tensile properties of high density polyethylene (HDPE)/recycled acrylonitrile butadiene rubber (NBRr)/banana skin powder (BSP)/ composites has been studies. HDPE/NBRr/BSP composites were prepared by melt mixing technique using twin-screw at 180 °C for 9 minutes at rotor speed 50 rpm. The six different composites studied were 100/0/5, 80/20/5, 70/30/5, 60/40/5, 50/50/5, and 40/60/5. As for compatibilized composite a fix 5 wt% of ENR-50 was evaluated. The specimens were analysed for tensile strength and elongation at break (Eb). The results showed that tensile strength and the elongation at break were decreases with the increasing of NBRr loading. However for ENR-50 compatibilized composites, higher tensile strength and elongation at break was recorded. The ENR-50 was found to be an excellent compatibilizer for HDPE/NBRr/BSP composites.


2009 ◽  
Vol 113 (4) ◽  
pp. 2081-2089 ◽  
Author(s):  
Jingjing Zhang ◽  
Chul B. Park ◽  
Ghaus M. Rizvi ◽  
Hanxiong Huang ◽  
Qingping Guo

2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Henry C. Obasi

Blends of nonbiodegradable and biodegradable polymers can promote a reduction in the volume of plastic waste when they undergo partial degradation. In this study, properties of raphia palm interspersed fibre (RPIF) filled high density polyethylene (HDPE) have been investigated at different levels of filler loadings, 0 to 60 wt.%. Maleic anhydride-graft polyethylene was used as a compatibilizer. Raphia palm interspersed fibre was prepared by grinding and sieved to a particle size of 150 µm. HDPE blends were prepared in a corotating twin screw extruder. Results showed that the tensile strength and elongation at break of the blends decreased with increase in RPI loadings and addition of MA-g-PE was found to improve these properties. However, the Young’s modulus increased with increase in the amount of RPI into HDPE and compatibilization further increased the Young’s modulus. The water absorption indices and weight loss for RPI/HDPE composites were found to increase with RPI loadings but were decreased on addition of MA-g-PE.


RSC Advances ◽  
2017 ◽  
Vol 7 (40) ◽  
pp. 24895-24902 ◽  
Author(s):  
Jinlong Zhang ◽  
Qinglin Wu ◽  
Guangyao Li ◽  
Mei-Chun Li ◽  
Xiuxuan Sun ◽  
...  

High density polyethylene and wood flour (HDPE/WF) composites containing three flame modifiers (FMs) (i.e., two fire retardants: 1,2-bis(pentabromophenyl) and ethylene bis(tetrabromophthalimide), and one nanoclay), maleic anhydride grafted polyethylene (MAPE) and other processing aids were prepared through twin-screw extrusion, and their properties were characterized.


2016 ◽  
Vol 36 (2) ◽  
pp. 113-118 ◽  
Author(s):  
Arfat Anis ◽  
Shan Faiz ◽  
Saeed M. Al-Zahrani

Abstract The objectives of this study were to examine the effects of fiber content and extrusion parameters on polybenzimidazole (PBI) fiber-reinforced polyethylene composites and to determine the optimum values for the tensile strength. The PBI fiber was physically mixed with high density polyethylene (HDPE) and then extruded through a twin screw extruder. The extrusion parameters were studied at different levels, barrel temperatures at 240°C, 250°C and 260°C and screw speeds at 12 rpm, 15 rpm and 18 rpm. The tensile strength was measured using a universal testing machine. A response surface experimental design using Design-Expert was applied to investigate the effect of fiber loading and extrusion parameters (barrel temperature, screw speed) on tensile properties of the resulting composite and consequently analyzing the optimized value for these parameters to yield maximum tensile strength. The analysis predicted a linear model which suggests that in order to achieve maximum tensile strength the screw speed should be 18 rpm, the barrel temperature at 240°C and at a fiber loading of 2%.


2014 ◽  
Vol 591 ◽  
pp. 60-63 ◽  
Author(s):  
N. Venkatesan ◽  
G.B. Bhaskar ◽  
Kaliyaperumal Pazhanivel ◽  
K. Poyyathappan

In recent years, many researches focused on the polymer materials to study the characteristics and to enhance the mechanical properties of the nanocomposites in order to understand the factors which lead to the desired dispersion of nanoclay in the polymer matrix. The samples used in this work were prepared through melt compounding, using high-density polyethylene and organo-modified clay of montmorillonite (MMT). During manufacturing of MMT/HDPE nanocomposites, a silane modifier and polyethylene grafted with maleic anhydride (compatibilizer) were added to get good surface finish and to act as bonding agent respectively. In addition, the compatibilizer will help in attaining better intercalation. Using a Plastograph-Mixer through twin-screw extruder, the high density polyethylene and different weight percentages (0, 1, 2, 3, 4 wt. %) of MMT are mixed and subsequently the composite is produced in the form of solid material. ASTM standard specimens for various tests are produced using injection molding machine with respective dies. The prepared experimental specimens for various tests like tensile, flexural, impact and shore-hardness are tested for its respective strengths. From this investigation, it is concluded that the addition of MMT nanoclay in HDPE has significantly influenced the mechanical properties of the composites.


2018 ◽  
Vol 777 ◽  
pp. 27-31
Author(s):  
Achmad Chafidz ◽  
Ariany Zulkania ◽  
Tintin Mutiara ◽  
Prima A. Handayani ◽  
Muhammad Rizal

In this work, high density polyethylene (HDPE)/polyvinyl alcohol (PVA) fiber composites have been fabricated via melt compounding by employing a twin-screw extruder. The resulted composites samples of four different PVA loadings (i.e. 0, 5, 10, 20 wt%) were then characterized via tensile test to investigate the effect of PVA loadings on their mechanical properties (i.e. modulus elasticity, tensile strength, toughness, and strain at break). Additionally, the surface morphologies of the composites (i.e. cryo-fractured and tensile fractured samples) were also studied by using a scanning electron microscopy (SEM). The SEM micrographs on the cryo-fractured sample showed that PVA fibers were perfectly embedded and well blended in HDPE matrix. Whereas, the SEM images of tensile-fractured samples showed that there was a fibrillation effect on the neat HDPE, while in the composites sample, there was an evident of broken fibers. Additionally, from the tensile test results, the modulus elasticity of the composites has increased by approximately 16, 39, and 81% (as compared to the neat HDPE) for PVAC-5, PVAC-10, and PVAC-20, respectively. Whereas, the toughness and strain at break of the composites have decreased.


Sign in / Sign up

Export Citation Format

Share Document