scholarly journals Dielectric Properties of P(VDF-TrFE-CTFE) Composites Filled with Surface-Coated TiO2 Nanowires by SnO2 Nanoparticles

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 85 ◽  
Author(s):  
Qilong Zhang ◽  
Zhao Zhang ◽  
Nuoxin Xu ◽  
Hui Yang

Nanocomposites containing inorganic fillers embedded in polymer matrices have exhibited great potential applications in capacitors. Therefore, an effective method to improve the dielectric properties of polymer is to design novel fillers with a special microstructure. In this work, a combination of hydrothermal method and precipitation method was used to synthesize in situ SnO2 nanoparticles on the surface of one-dimensional TiO2 nanowires (TiO2 NWs), and the TiO2NWs@SnO2 fillers well-dispersed into the poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer. Hybrid structure TiO2NWs @SnO2 introduce extra interfaces, which enhance the interfacial polarization and the dielectric constant. Typically, at 10 vol.% low filling volume fraction, the composite with TiO2NWs @SnO2 shows a dielectric constant of 133.4 at 100 Hz, which is almost four times that of polymer. Besides, the TiO2 NWs prevents the direct contact of SnO2 with each other in the polymer matrix, so the composites still maintain good insulation performance. All the improved performance indicates these composites can be widely useful in electronic devices.

2019 ◽  
Vol 184 (3-4) ◽  
pp. 342-346
Author(s):  
K Waree ◽  
K Pangza ◽  
N Jangsawang ◽  
P Thongbai ◽  
S Buranurak

Abstract The main focus of this study is to investigate the effect of gamma irradiation on the electrical properties of PVDF/BT nanocomposites. A 1.25 MeV gamma-ray was delivered to the composite films with different BaTiO3-volume fraction, ƒBT = 0–0.4, and with different absorbed doses ranged 50–2500 Gy. Dielectric properties of PVDF/BaTiO3 composites under frequencies ranged from 100 Hz to 10 MHz at room temperature were investigated using an impedance analyser. An increase of 28% in the dielectric constant and a decrease of 15% in the loss tangent were observed in the PVDF/BT 40 vol% nanocomposite film under the accumulated dose of 1500 Gy. Scanning electron microscopy provided no significant difference in microscopic structures between non-exposed and gamma-exposed materials. Fourier-transform infra-red spectroscopy provides gamma-induced transition of PVDF-crystalline forms as alpha-PVDF into beta-PVDF/gamma-PVDF which has been reported as one of the main factors affected the change of dielectric constant in polymers. UV–visible spectrophotometry has been observed gamma-induced red shift in the absorption edge of the PVDF/BT 40 vol% nanocomposite film from 400 nm to 420 nm under the accumulated dose of 1500 Gy. However, a blue shift is observed with increase the accumulated dose up to 2000 Gy.


2012 ◽  
Vol 496 ◽  
pp. 263-267
Author(s):  
Rui Li ◽  
Jian Zhong Pei ◽  
Yan Wei Li ◽  
Xin Shi ◽  
Qun Le Du

A novel all-polymeric material with high dielectric constant (k) has been developed by blending poly (vinylidene fluoride) (PVDF) with polyamide-6 (PA6). The dependence of the dielectric properties on frequency and polymer volume fraction was investigated. When the volume fraction of PA6 is 20%, the dielectric property is better than others. The SEM investigations suggest that the enhanced dielectric behavior originates from significant interfacial interactions of polymer-polymer. The XRD demonstrate that the PA6 and PVDF affect the crystalline behavior of each component. Furthermore, the stable dielectric constants of the blends could be tuned by adjusting the content of the polymers. The created high-k all-polymeric blends represent a novel type of material that are simple technology and easy to process, and is of relatively high dielectric constant, applications as flexible electronics.


2014 ◽  
Vol 1035 ◽  
pp. 417-421 ◽  
Author(s):  
Jian Wen Zhai ◽  
Ya Jun Wang ◽  
Jian Lou Deng ◽  
Chang Gen Feng

nanoand micro size Cu were employed separately and investigated comparatively. Different volume fraction of Cu was added into PVDF film in order to investigate the content of filler effect on the dielectric properties of polymer composites. XRD and SEM were used to analyze the crystalline phase and microstructure of the films. The results show that two sizes of Cu have the same peak features, and with the continuous increase of the content of Cu, it disperse better in PVDF. The dielectric constant (ε) of the composite containing 16 vol% micro-CCTO filler is 16 at 100 Hz and room temperature, and its dielectric loss (tanδ) is only 0.15, which is substantially better than others. Besides, for 18 vol% nanoCu/PVDF composite tanδis 0.25 andεis 18 at 100 Hz. Moreover,εand tanδof nanoCu/PVDF composite are both higher than those of micro-Cu/PVDF. Analysis shows that the composites with nanoCu have higher dielectric constants, which is mainly from the interfacial polarization.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1541 ◽  
Author(s):  
Yongchang Jiang ◽  
Zhao Zhang ◽  
Zheng Zhou ◽  
Hui Yang ◽  
Qilong Zhang

Polymer dielectric materials are extensively used in electronic devices. To enhance the dielectric constant, ceramic fillers with high dielectric constant have been widely introduced into polymer matrices. However, to obtain high permittivity, a large added amount (>50 vol%) is usually needed. With the aim of improving dielectric properties with low filler content, satellite–core-structured Fe2O3@BaTiO3 (Fe2O3@BT) nanoparticles were fabricated as fillers for a poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix. The interfacial polarization effect is increased by Fe2O3 nanoparticles, and thus, composite permittivity is enhanced. Besides, the satellite–core structure prevents Fe2O3 particles from directly contacting each other, so that the dielectric loss remains relatively low. Typically, with 20 vol% Fe2O3@BT nanoparticle fillers, the permittivity of the composite is 31.7 (1 kHz), nearly 1.8 and 3.0 times that of 20 vol% BT composites and pure polymers, respectively. Nanocomposites also achieve high breakdown strength (>150 KV/mm) and low loss tangent (~0.05). Moreover, the composites exhibited excellent flexibility and maintained good dielectric properties after bending. These results demonstrate that composite films possess broad application prospects in flexible electronics.


2020 ◽  
Vol 16 ◽  
Author(s):  
Alliya Qamar ◽  
Rehana Zia ◽  
Madeeha Riaz

Background: Hydroxyapatite is similar to bone mineral in chemical composition, has good biocompatibility with host tissue and bone. Objective: This work aims to tailor the mechanical and dielectric properties of hydroxyapatite with zinc sudstitution, to improve wearability of implant and accelerate the healing process. Method: Pure and zinc incorporated hydroxyapatite Ca10(PO4)6(OH)2 samples have been successfully prepared by means of the chemical precipitation method. Results: The results showed that hydroxyapatite(Hap) having hexagonal structure was the major phase identified in all the samples. It was found that secondary phase of β-tricalcium phosphate (β-TCP) formed due to addition of Zinc resulting in biphasic structure BCP (Hap + β-TCP). A minor phase of ZnO also formed for higher concentration of Zn (Zn ≥ 2mol%) doping. It was found that the Zn incorporation to Hap enhanced both mechanical and dielectric properties without altering the bioactive properties. The microhardness increased upto 0.87 GPa for Zn concentration equal to 1.5mol%, which is comparable to the human bone ~0.3 - 0.9 GPa. The dielectric properties evaluated in the study showed that 1.5 mol% Zn doped hydroxyapatite had highest dielectric constant. Higher values of dielectric constant at low frequencies signifies its importance in healing processes and bone growth due to polarization of the material under the influence of electric field. Conclusion: Sample Z1.5 having 1.5 mol% Zn doping showed the most optimized properties suitable for bone regeneration applications.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2451
Author(s):  
Jianwen Zhang ◽  
Dongwei Wang ◽  
Lujia Wang ◽  
Wanwan Zuo ◽  
Lijun Zhou ◽  
...  

To study the effect of hyperbranched polyester with different kinds of terminal groups on the thermomechanical and dielectric properties of silica–epoxy resin composite, a molecular dynamics simulation method was utilized. Pure epoxy resin and four groups of silica–epoxy resin composites were established, where the silica surface was hydrogenated, grafted with silane coupling agents, and grafted with hyperbranched polyester with terminal carboxyl and terminal hydroxyl, respectively. Then the thermal conductivity, glass transition temperature, elastic modulus, dielectric constant, free volume fraction, mean square displacement, hydrogen bonds, and binding energy of the five models were calculated. The results showed that the hyperbranched polyester significantly improved the thermomechanical and dielectric properties of the silica–epoxy composites compared with other surface treatments, and the terminal groups had an obvious effect on the enhancement effect. Among them, epoxy composite modified by the hyperbranched polyester with terminal carboxy exhibited the best thermomechanical properties and lowest dielectric constant. Our analysis of the microstructure found that the two systems grafted with hyperbranched polyester had a smaller free volume fraction (FFV) and mean square displacement (MSD), and the larger number of hydrogen bonds and greater binding energy, indicating that weaker strength of molecular segments motion and stronger interfacial bonding between silica and epoxy resin matrix were the reasons for the enhancement of the thermomechanical and dielectric properties.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 492 ◽  
Author(s):  
Moustafa A. Darwish ◽  
Alex V. Trukhanov ◽  
Oleg S. Senatov ◽  
Alexander T. Morchenko ◽  
Samia A. Saafan ◽  
...  

A pure ferrite and epoxy samples as well as the epoxy/ferrite composites with different 20 wt.%, 30 wt.%, 40 wt.%, and 50 wt.% weight ferrite contents have been prepared by the chemical co-precipitation method. AC-conductivity and dielectric properties such as the dielectric constant and dielectric loss of the prepared samples have been studied. The obtained results showed that the samples had a semiconductor behavior. The dielectric constant of the composites has been calculated theoretically using several models. For the composite sample that contains 20 wt.% of ferrites, these models give satisfactory compliance, while for the composite samples with a higher percentage of nanofillers, more than 30 wt.% theoretical results do not coincide with experimental data. The investigated polymer has very low conductivity, so this type of polymer can be useful for high-frequency applications, which can reduce the losses caused by eddy current. Thus, the prepared samples are promising materials for practical use as elements of microwave devices.


2012 ◽  
Vol 512-515 ◽  
pp. 1180-1183
Author(s):  
Qian Qian Jia ◽  
Hui Ming Ji ◽  
Shan Liu ◽  
Xiao Lei Li ◽  
Zheng Guo Jin

The (Ba, Sr)TiO3 (hereafter BST) ceramics are promising candidate for applying in tunable devices. MgO coated BST-Mg2TiO4 (BSTM-MT) composite ceramics were prepared to obtain the low dielectric constant, low dielectric loss, good dielectric constant temperature stability, and high tunability of BST ceramics. The Ba0.55Sr0.40Ca0.05TiO3 nanoparticles were coated with MgO using the precipitation method and then mixed with Mg2TiO4 powders to fabricate BSTM-MT composite ceramics. The morphologies, phases, elements, and dielectric properties of the sintered ceramics were investigated. The core-shell structure of BST powder wrapped with MgO was clearly observed from the TEM image. After sintered at 1100 °C for 2 h, the composite ceramics expressed dense microstructures from SEM images and two main phases BST and Mg2TiO4 were detected in the XRD patterns. The dielectric constant and loss tangent were both reduced after the coating. The reduced dielectric constant and loss tangent of BSTM-MT were 190, 0.0011 (2MHz), respectively. The ceramics exhibited the diffuse phase transition near the Curie temperature and the Curie temperature shifted from 10 °C to 5 °C after the coating. Since the continuous Ti-O bonds were disconnected with the MgO coating, the tunability was reduced to 15.14 % under a DC bias field of 1.1 kV/mm. The optimistic dielectric properties made it useful for the application of tunable capacitors and phase shifters.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 755
Author(s):  
Lingfei Li ◽  
Qiu Sun ◽  
Xiangqun Chen ◽  
Yongjun Xu ◽  
Zhaohua Jiang

In this work, poly(1-butene) (PB-1) composite films with multi-walled carbon nanotubes (MWCNT) were prepared by a solution casting method. The relationship between the dielectric properties and the crystal transformation process of the films was investigated. It was indicated that there were two crystal forms of I and II of PB-1 during the solution crystallization process. With the prolongation of the phase transition time, form II was converted into form I. The addition of the conductive filler (MWCNT) accelerated the rate of phase transformation and changed the nucleation mode of PB-1. The presence of crystal form I in the system increased the breakdown strength and the dielectric constant of the films and reduced the dielectric loss, with better stability. In addition, the dielectric constant and the dielectric loss of the MWCNT/PB-1 composite films increased with the addition of MWCNT, due to the interfacial polarization between MWCNT and PB-1 matrix. When the mass fraction of the MWCNT was 1.0%, the composite film had a dielectric constant of 43.9 at 25 °C and 103 Hz, which was 20 times that of the original film.


2018 ◽  
Vol 08 (03) ◽  
pp. 1850017 ◽  
Author(s):  
Srikanta Moharana ◽  
Shraddhakara Sai ◽  
Ram Naresh Mahaling

The surface hydroxylation treatment has been carried out by using hydrogen peroxide (H2O2) to modify the surface of Na[Formula: see text]Bi[Formula: see text]TiO3 (NBT) particles in a ferroelectric polymer (PVDF) via solution casting technique. The FTIR study confirms the presence of hydroxyl groups on the surface of NBT. The FE-SEM analysis reveals that h-NBT particles are dispersed homogeneously within the polymer matrix. The surface hydroxylation treatment plays an important role in high dielectric constant and also reduced loss by conducting the material surface with [Formula: see text]OH functional groups. The prepared composite with 40[Formula: see text]wt.% of h-NBT showed enhanced dielectric constant ([Formula: see text]114), negligible loss (0.22) and high AC conductivity as compared to that of the unmodified NBT. Such significant enhancement in dielectric properties may be due to the strong interaction between h-NBT particles and PVDF matrix at the interface. The percolation theory is used to explain the dielectric properties of h-NBT-PVDF composite. Furthermore, the remnant polarization of the un-poled h-NBT-PVDF composites (2[Formula: see text]Pr–1.19[Formula: see text][Formula: see text]C/cm2 for 40[Formula: see text]wt.% of h-NBT) is also improved. The present findings give an idea of high dielectric constant and relatively low loss composite materials as a promising candidate for electronic and energy storage devices.


Sign in / Sign up

Export Citation Format

Share Document