scholarly journals Surface and Structural Properties of Medical Acrylonitrile Butadiene Styrene Modified with Silver Nanoparticles

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 197 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek ◽  
Kinga Pielichowska

Acrylonitrile butadiene styrene/silver nanoparticles (ABS/AgNPs) composites were manufactured through the plastic processing method. Three different matrices were used to obtain polymer and composite samples containing 0.5 wt % and 1.0 wt % of silver nanoparticles, respectively. The aim of this study was to examine physicochemical properties and stability of the materials in the in vitro conditions for two years. The results showed that composites made from amorphous matrices had comparable mechanical properties after incorporation of AgNPs. The values of Young modulus and tensile strength increased after the first and second year of investigation. Silver nanoparticles did not alter the surface parameters—e.g., roughness and contact angle also retained stable values after the in vitro incubation in water solution. The scanning electron observation revealed homogeneous distribution of silver modifier in all the matrices. The 24-month incubation of materials proved the stability of the composites microstructure. The DSC analysis revealed that addition of AgNPs may decrease glass transition temperature of the composite materials which was also reduced after 12 and 24 months of incubation. The attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopic studies did not indicate significant changes in the ABS matrices either upon their modification with AgNPs or after the long-term testing. The conducted studies proved that all the composites are stable and may be used for a long-term working period.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2018 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek

Composite materials based on polypropylene modified with silver nanoparticles (PP/AgNPs) were manufactured using injection molding and extrusion. Two different matrices were used to prepare the samples consisting of 0.5 and 1.0 wt. % of silver nanoparticles, respectively. The aim of this study was to assess whether silver nanoparticles (AgNPs) could influence the stability of a polymer matrix during the 24-month period of the in vitro testing. The results indicated that composites with silver nanoparticles displayed the significantly higher Young modulus and tensile strength after the first and second year of investigation. Moreover, the incorporation of nanoparticles into the matrix slightly increased the roughness and contact angle values and the parameters remained stable after the in vitro incubation. The two-year immersion of materials in the deionized water proved that the microstructure of composites did not change. The DSC analysis revealed that the material incubation resulted in a slight reduction in the melting temperature and degree of crystallinity of PP. The addition of nanoparticles to polymer matrices led to the increase in content of β crystals in the crystalline phase of PP, which was revealed in the long-term in vitro tests. The XRD measurement also showed the heightened surface crystallinity. The conducted studies have proved that all composites are stable over a period of 24 months. Such behavior suggests that the tested materials can be used as biomaterials.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 786 ◽  
Author(s):  
Oscar Gil-Castell ◽  
José David Badia ◽  
Jordi Bou ◽  
Amparo Ribes-Greus

The evaluation of the performance of polyesters under in vitro physiologic conditions is essential to design scaffolds with an adequate lifespan for a given application. In this line, the degradation-durability patterns of poly(lactide-co-glycolide) (PLGA), polydioxanone (PDO), polycaprolactone (PCL) and polyhydroxybutyrate (PHB) scaffolds were monitored and compared giving, as a result, a basis for the specific design of scaffolds from short-term to long-term applications. For this purpose, they were immersed in ultra-pure water and phosphate buffer solution (PBS) at 37 °C. The scaffolds for short-time applications were PLGA and PDO, in which the molar mass diminished down to 20% in a 20–30 days lifespan. While PDO developed crystallinity that prevented the geometry of the fibres, those of PLGA coalesced and collapsed. The scaffolds for long-term applications were PCL and PHB, in which the molar mass followed a progressive decrease, reaching values of 10% for PCL and almost 50% for PHB after 650 days of immersion. This resistant pattern was mainly ascribed to the stability of the crystalline domains of the fibres, in which the diameters remained almost unaffected. From the perspective of an adequate balance between the durability and degradation, this study may serve technologists as a reference point to design polyester-based scaffolds for biomedical applications.


2021 ◽  
Author(s):  
S Shanthi ◽  
V. Uma Maheshwari Nallal ◽  
Krishnan Anand ◽  
Balasubramani Ravindran ◽  
Soon Woong Chang ◽  
...  

Abstract Bio-inspired nanoparticle synthesis has attracted substantial interest among the scientific society owing to its eco-friendly and non-toxic nature. In the present study, Silver nanoparticles (AgNPs) were synthesized using high altitude squamulose lichen – Cladonia subradiata and characterized using different techniques. The antioxidant and anticandida activity of AgNPs were evaluated using multiple in-vitro assays. In-silico molecular docking analysis and in-vitro cytotoxic assay was performed to determine the anti-cancer potential of synthesized AgNPs. The results of the spectroscopic studies revealed the successful synthesis of AgNPs and the presence of different functional groups suggesting the involvement of phytocompounds in the reduction and capping of AgNPs. The average size of the AgNPs was 20 nm and predominantly spherical in shape. AgNPs demonstrated excellent DPPH free radicals scavenging activity with an IC50 value of 7.51 ± 0.4 µg/mL. C.albicans was identified as the most susceptible strain from the anticandida studies. Usnic acid and Pulvinic acid exhibited low binding energies and showed excellent inhibition interaction with EGFR lung cancer protein. The in-vitro cytotoxic results were impressive with an IC50 value of 28.75 µg/mL for A549 lung cancer cells treated with AgNPs. Thus, the study demonstrates the effective and non-toxic synthesis of AgNPs using a less explored lichen extract as a promising anticandida and anticancer agent in the field of nano-medicine.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7325
Author(s):  
Denisa Batir-Marin ◽  
Cornelia Mircea ◽  
Monica Boev ◽  
Ana Flavia Burlec ◽  
Andreia Corciova ◽  
...  

The ethanolic extracts of three Equisetum species (E. pratense Ehrh., E. sylvaticum L. and E. telmateia Ehrh.) were used to reduce silver ions to silver nanoparticles (AgNPs). The synthesized AgNPs were characterized using UV-Vis spectrophotometry, Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM) and Dynamic Light Scattering (DLS) measurements. FTIR data revealed the functional groups of biomolecules involved in AgNPs synthesis, such as O-H, C-H, C=O, C-O, and C-C. EDX spectroscopy was used to highlight the presence of silver, while DLS spectroscopy provided information on the mean diameter of AgNPs, that ranged from 74.4 to 314 nm. The negative Zeta potential values (−23.76 for Ep–AgNPs, −29.54 for Es–AgNPs and −20.72 for Et–AgNPs) indicate the stability of the obtained colloidal solution. The study also focused on establishing the photocatalytic activity of AgNPs, which is an important aspect in terms of removing organic dyes from the environment. The best photocatalytic activity was observed for AgNPs obtained from E. telmateia, which degraded malachite green in a proportion of 97.9%. The antioxidant action of the three AgNPs samples was highlighted comparatively through four tests, with the best overall antioxidant capacity being observed for AgNPs obtained using E. sylvaticum. Moreover, the biosynthesized AgNPs showed promising cytotoxic efficacy against cancerous cell line MG63, the AgNPs obtained from E. sylvaticum L. providing the best result, with a LD50 value around 1.5 mg/mL.


2018 ◽  
Vol 26 (6(132)) ◽  
pp. 114-119 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek

The aim of this study was to investigate the surface properties of polymeric composites and the osteoblastic cell behaviour set in direct contact with the biomaterials tested. The surface properties were evaluated before and after 6-month incubation in an in vitro environment. The composite materials were prepared by means of extrusion and injection moulding. Three commercially available thermoplastic polymers (ABS (poly)acrylonitrile butadiene styrene) were used as composite matrices. Antibacterial silver nanoparticles (AgNPs) were added as a modifying phase. Surface properties of the materials tested, such as: wettability, roughness and microstructure, were determined. Furthermore the morphology of Saos-2 human osteoblastic cells in direct contact with the composite materials was assessed after the 7-day culture. The addition of silver nanoparticles caused minor changes in the wettability and roughness values. As light modification, the silver nanoparticles influenced the microstructure. The osteoblasts displayed the proper morphology and they evenly settled on the surface of the pure polymer and composite materials, which indicated the material cytocompatibility.


2019 ◽  
Vol 26 (08) ◽  
pp. 1950044 ◽  
Author(s):  
LI SUN ◽  
TAO XI WANG ◽  
MUHAMMAD HAIRUL IZWAN BIN MOHD ZAKEE ◽  
MUHAMMAD SYAZWAN BIN ROSLI ◽  
YUN XIANG LEE ◽  
...  

In this paper, first we investigate the heating-responsive shape memory effect in an acrylonitrile butadiene styrene (ABS). Subsequently, after surface treatment (via dipping in acetone/water solution of different concentrations and for different dipping time) of pre-stretched samples, we demonstrate the feasibility to form strip shaped wrinkles atop the surface upon heating of pre-stretched ABS for shape recovery. The influential factors, such as acetone concentration and dipping time in surface treatment, are revealed and discussed.


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 2082 ◽  
Author(s):  
Salem S. Salem ◽  
Ehab F. EL-Belely ◽  
Gniewko Niedbała ◽  
Maryam M. Alnoman ◽  
Saad El-Din Hassan ◽  
...  

An endophytic strain of Streptomyces antimycoticus L-1 was isolated from healthy medicinal plant leaves of Mentha longifolia L. and used for the green synthesis of silver nanoparticles (Ag-NPs), through the use of secreted enzymes and proteins. UV–vis spectroscopy, Fourier-transform infrared (FT-IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) analyses of the Ag-NPs were carried out. The XRD, TEM, and FT-IR analysis results demonstrated the successful biosynthesis of crystalline, spherical Ag-NPs with a particle size of 13–40 nm. Further, the stability of the Ag-NPs was assessed by detecting the surface Plasmon resonance (SPR) at 415 nm for one month or by measuring the NPs surface charge (−19.2 mV) by zeta potential analysis (ζ). The green-synthesized Ag-NPs exhibited broad-spectrum antibacterial activity at different concentrations (6.25–100 ppm) against the pathogens Staphylococcus aureus, Bacillus subtilis Pseudomonas aeruginosa, Escherichia coli, and Salmonella typhimurium with a clear inhibition zone ranging from (9.5 ± 0.4) nm to (21.7 ± 1.0) mm. Furthermore, the green-synthesized Ag-NPs displayed high efficacy against the Caco-2 cancerous cell line (the half maximal inhibitory concentration (IC50) = 5.7 ± 0.2 ppm). With respect to antibacterial and in-vitro cytotoxicity analyses, the Ag-NPs concentration of 100 ppm was selected as a safe dose for loading onto cotton fabrics. The scanning electron microscopy connected with energy-dispersive X-ray spectroscopy (SEM-EDX) for the nano-finished fabrics showed the distribution of Ag-NPs as 2% of the total fabric elements. Moreover, the nano-finished fabrics exhibited more activity against pathogenic Gram-positive and Gram-negative bacteria, even after 10 washing cycles, indicating the stability of the treated fabrics.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1257 ◽  
Author(s):  
Magdalena Ziąbka ◽  
Michał Dziadek ◽  
Elżbieta Menaszek

We evaluated the biological, mechanical, and surface properties of polymer nanocomposites manufactured via plastics processing, extrusion, and injection moulding. The aim of this study was to identify the interaction of fibroblasts and osteoblasts with materials intended for middle ear implants. We examined if silver nanoparticles (AgNPs) may change the mechanical parameters of the polymer nanocomposites. In our study, the biostable polymer of thermoplastic acrylonitrile-butadiene-styrene (ABS) copolymer was used. Silver nanoparticles were applied as a modifier. We discuss surface parameters of the materials, including wettability and roughness, and evaluated the microstructure. The mechanical parameters, such as the Young’s modulus and tensile strength, were measured. Cytotoxicity tests were conducted on two cell lines: Hs680.Tr human fibroblasts and Saos-2 human osteoblasts. Cell viability, proliferation, and morphology in direct contact with nanocomposites were tested. Based on the results, the incorporated modifier was found to affect neither the number of osteoblasts nor the fibroblast cells. However, the addition of AgNPs had a relatively small effect on the cytotoxicity of the materials. A slight increase in the cytotoxicity of the test materials was observed with respect to the control, with the cytotoxicity of the materials tending to decrease after seven days for osteoblast cells, whereas it remained steady for fibroblasts. Based on optical microscope observation, the shape and morphology of the adhered cells were evaluated. After seven days of culture, fibroblasts and osteoblasts were properly shaped and evenly settled on the surface of both the pure polymer and the silver nanoparticle-modified composite. Water droplet tests demonstrated increased hydrophilicity when adding the AgNPs to ABS matrices, whereas roughness tests did not show changes in the surface topography of the investigated samples. The 0.5% by weight incorporation of AgNPs into ABS matrices did not influence the mechanical properties.


2007 ◽  
Vol 189 (22) ◽  
pp. 8270-8276 ◽  
Author(s):  
Gina Parise Sloan ◽  
Cheraton F. Love ◽  
Neelima Sukumar ◽  
Meenu Mishra ◽  
Rajendar Deora

ABSTRACT Bordetellae are respiratory pathogens that infect both humans and animals. Bordetella bronchiseptica establishes asymptomatic and long-term to life-long infections of animal nasopharynges. While the human pathogen Bordetella pertussis is the etiological agent of the acute disease whooping cough in infants and young children, it is now being increasingly isolated from the nasopharynges of vaccinated adolescents and adults who sometimes show milder symptoms, such as prolonged cough illness. Although it has been shown that Bordetella can form biofilms in vitro, nothing is known about its biofilm mode of existence in mammalian hosts. Using indirect immunofluorescence and scanning electron microscopy, we examined nasal tissues from mice infected with B. bronchiseptica. Our results demonstrate that a wild-type strain formed robust biofilms that were adherent to the nasal epithelium and displayed architectural attributes characteristic of a number of bacterial biofilms formed on inert surfaces. We have previously shown that the Bordetella Bps polysaccharide encoded by the bpsABCD locus is critical for the stability and maintenance of three-dimensional structures of biofilms. We show here that Bps is essential for the formation of efficient nasal biofilms and is required for the colonization of the nose. Our results document a biofilm lifestyle for Bordetella in mammalian respiratory tracts and highlight the essential role of the Bps polysaccharide in this process and in persistence of the nares.


Sign in / Sign up

Export Citation Format

Share Document